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Abstract

This paper describes the first stage of our study
on evolution of learning abilities. We use a sim-
ple maze exploration problem designed by R. Sut-
ton as the task of each individual, and encode the
inherent learning parameters on the genome. The
learning architecture we use is a one step Q-learning
using look-up table, where the inherent parameters
are initial Q-values, learning rate, discount rate of
rewards, and exploration rate. Under the fitness
measure proportioning to the number of times it
achieves at the goal in the later half of life, learners
evolve through a genetic algorithm. The results of
computer simulation indicated that learning ability
emerge when the environment changes every gen-
eration, and that the inherent map for the optimal
path can be acquired when the environment doesn’t
change. These results suggest that emergence of
learning ability needs environmental change faster
than alternate generation.

1 Introduction

There are many layers in the Artificial Life researches
such as molecular dynamics, evolution, development,
learning, collective behavior, and so on. One of the
methods for fruitful studies is on combination of two or
three of these layers, such as evolutionary development
system, collective behavior of learners. We already fin-
ished the first stage of above two kinds of combinations
(Nade et al; 1994, Unemi, 1993). On the third com-
bination, evolution of learners, Todd and Miller have
been pursuing evolutionary process to organize associa-
tive neural networks that learn by a simple Hebbian rule
(Todd and Miller, 1990). Ackley and Littman mentioned
genetic acquisition of evaluation network in a neural net-
work based reinforcement learning method (Ackley and
Littman, 1992) and a distributed Lamarckian evolution
(Ackley and Littman, 1992). Their studies provided us
fruitful suggestion to understand a process of emergence
of intelligent creatures. However, we are just starting
our steps toward the real intelligent creature, that is,
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Figure 1: An example of the maze. Black squares are
obstacles. The letter S and G indicate the start position
and the goal position respectively.

human. We need more studies to complement the pio-
neers’ works and to advance our understanding in this
field.

This paper describes the first stage of our study on
evolution of learning abilities of which final goal is to
make learning ability to emerge structurally. As the
first step of this challenge, we tried to optimize the in-
herent learning parameters of a reinforcement learning
mechanism using a genetic algorithm. We can intu-
itively expect that it is unnecessary for creatures to have
learning abilities if the environment is stable and doesn’t
change through many generations but learning abilities
are needed if the environment changes every generation.
To realize these phenomena on the computer, we de-
signed a simulator of evolvable learners that consists of
a simple learning task, a simple learning algorithm, and
a simple genetic algorithm.

The rest sections of this paper describe the specifica-
tions of the simulator, the experiments, and their results.

2 Task for individual

The task for each individual is a simple maze exploration
designed by Sutton as a testbed for his Dyna learning
architecture (Sutton, 1990). The maze an individual
creature lives in is a two-dimensional grid world of nine
columns and six rows. Some of the grids are occupied by
obstacles so the individual cannot position there. Figure
1 shows a typical map of the maze used in the experi-
ments described later.

In each execution step, it moves from the current posi-
tion to the adjacent grid in the maze not occupied by an
obstacle. From fixed start position, it explores the maze



toward the fixed goal position. It gets positive reinforce-
ment signal when it reaches the goal and then starts
exploration from the start position again. It knows its
position in each step.

This is a typical task for simple reinforcement learn-
ing, where the environment is stable, deterministic, and
discrete. Some readers may feel that such settings are
too simple as a model of life, but it would be better to
start a simple model as possible at the first stage.

3 Learning algorithm

We employ a one step Q-learning using look-up table
proposed by Sutton (1990), because its algorithm is very
simple and the look-up table has an ability to represent
a map of the world. A brief description of this learning
algorithm is as follows.

In each execution step, the learner gets sensory input
from the environment and decides its action based on
the input data. Then it takes the action, and receives
reinforcement signal if available, and then goes to the
new state. The look-up table contains the Q-values that
estimate expected reward corresponding to the all of pos-
sible states and actions, that is, Q-value @, indicates
expected reward when the individual takes the action a
at state . For the task we use, the look-up table con-
tains 4 x 24+ (74+4) x 2x 3+4 x 7 x4 =186 Q-values
if it includes no obstacle, because of two actions in four
corners, three actions in four sides, and four actions in
inner grids.

The action is determined in each step according to a
probability of Boltzmann distribution. The probability
for selecting action a at state z is defined as

eXp(ana)
ZjEPossible Actions eXp(an)

where «, exploration rate, is the inverse value of temper-
ature. When the value of « is large, it tends to select the
action of maximum Q-value rigidly. When the value of
a 1s small, nearly zero, it tends to take a random action
regardless of the Q-values.

When 1t selected action a at state x, the result state
was y, and it received reward r, then the Q-value Q.4 1s
revised by the assignment equation:

Qxa — Qxa + B (7“ + P}/ml?Xbe - Qxa)

P(alz) =

where [ is learning rate and 7 is discount rate of rewards.

The learner explores the maze according to its ac-
tion selection mechanism and estimates the value of each
action at each state only referring to delayed rewards
through its own experience. Each individual creature
lives alone, that is, the individuals in population have
no interaction with each other.

Learning performance strongly depends on the values
of parameters, especially on the initial Q-values, though
theoretical guarantee of convergence to the global opti-
mum solution after infinite times of trials is proved by
Watkins (1993). Because the value of 8 should gradu-
ally increase for certain convergence, we set up the start
value and the end value of @ and /3, and gradually change
the values step by step under the constant difference.

Figure 2: Examples of the random mazes.

According to our preliminary experiments in the above
problem, when all of the initial Q-values is set to zero,
4,000 steps provides an enough number of trials to find
an optimal path, sometimes global optimum but often
local optimum. So, the life span of each individual is set
to 4,000 steps fixed in the experiments described later.

4 Genetic algorithm

This section describes the genetic algorithm we use here.

4.1 Genetic code

All of inherent learning parameters have continuous nu-
merical values. So, we employ eight bits integer cod-
ing for each parameter and translate each genetic code
to real number of its range proportionally, for exam-
ple, because the range of v is [0, 1], the value of v is
set to G /255 where G, is the value of eight bits un-
signed integer on the gene corresponding to v. The
ranges of Qgq, B, and 54 are [0,1], and the range of «
is [0,63.75] (63.75 = 255/4). One genome contains 221
bytes, 6x9x4=216 Q—Values, Qstart; Yend, Bstarta Benda
and 4. The reason we use redundant 216 Q-values rather
than 186 values as described above is merely to simplify
the implementation on the computer program.

4.2 Fitness

The fitness of each individual is calculated by counting
the times the learner achieves at the goal position in its
later half of life. The life span is set to 4,000 steps as
described above, counting is done during the later 2,000
steps. Because the first half of life should be treated as a
moratorium, we ignore the performance of that period.

4.3 Genetic operations

We use a simple genetic algorithm with a ranking and
elitist strategy using selection, crossover, and mutation.
The following list summarizes the algorithm.

Selection Remain the best third of genomes to the next
generation.

Crossover Replace the middle third of genomes to the
genomes made by crossover operation between each
one of the best third and the middle third. FEach
genome includes two pieces of byte string chromo-
somes where the one contains Q-values and the other
one contains the five parameters. One point crossover
is applied to each chromosome independently not bit-
wise but bytewise.
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Figure 3: An evolutionary process without learning on
fixed environment.

Mutation Replace the worst third of genomes to the
mutant of the best third. One byte randomly se-
lected from each chromosome is modified by pseudo-
Gaussian distribution.

Starting from the population of randomly initialized
genomes, evaluation and genetic operation cycles are it-
erated. The result of learning by an individual doesn’t
inherit to the offspring but only the natural characteris-
tics, that is, not Lamarckian but Darwinian evolution.

5 Experiments

For the purpose of this research, we tried experiments
concerning with four kinds of settings as follows.

1. Without learning but only evolution on the fixed en-
vironment.

2. Without learning but only evolution on the environ-
ment that changes randomly every generation.

3. With learning and evolution on the fixed environment.

4. With learning and evolution on the environment that
changes randomly every generation.

“Without learning” means the individual doesn’t learn
in any trial, that i1s, Q-values are not modified. The
behavior of the agent without learning depends only on
its inherent Q-values and «. The values of 5 and ¥ have
no effect. The map of fixed maze is as shown in Figure 1
above. A random maze is designed as the start position
is located in the left most column and the goal position
is located in the right most column and a path from
start to goal exists. Figure 2 shows two examples of the
random mazes.

We expected that it needs learning abilities if the en-
vironment changes every generation but it doesn’t need
if fixed. Setting 1 was expected to lead the acquisition

astart = 61.0, agpnq = 62.0,
Bstart = 0.24, feng = 0.86,y = 0.85

Figure 4: Probabilities of action selection of the best in-
dividual at 500th generation — the case without learning
on fixed environment. The size of black square in each
grid represents the probability of selecting the action at
that state, that is, P(al|z).

of inherent map of the environment, and setting 4 was
expected to lead the acquisition appropriate parameter
values for learning. In setting 2, it seemed to be hard to
adapt the environment. However, we could not predict
what would happen in setting 3.

Using the following values of genetic parameters, we
examined ten runs for each setting with distinct random
number sequences.

Population size = 100 individuals
Life span = 4,000 steps
Number of generations = 500 generations

The rest of this section describes a summary of the
experimental results.

5.1 Without learning on fixed environment

Figure 3 shows a typical trace of an evolutionary process.
As shown in Figure 4, the optimum path of the maze
is acquired through a punctuated equilibrium evolution,
where Q-values represent the map of the path and the
value of & becomes not always the maximum but large
enough to make selection rigid. All of ten runs shows
the similar pattern of evolutionary process, but some of
them were trapped at a local optimum even at 500th
generation.

5.2 Without learning on changing
environment

As shown in Figure 5, it is difficult to adapt the environ-
ment to walk through the optimal path. However, from
Figure 6, we can observe that the agent acquired the ten-
dency to go right because the start position is located at
the left most column and the goal position is located at
the right most column. All of ten runs shows the sim-
ilar pattern of evolutionary process. This fact suggests
that it is difficult to adapt to any changing environment
without learning ability.
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Figure 5: An evolutionary process without learning on
changing environment.

5.3 With learning on fixed environment

We observed both cases where the agents with efficient
learning abilities appeared and where the agents who
inherently know the optimal path appeared. Figure 7
and 8 show the former case, and Figure 9 and 10 show
the later case. The typical difference between these two
cases 1s seen at the value of agpare. In the former case,
agpary converged low that leads the agent to radical ex-
ploration at young age. This characteristic is useful for
learning. In the later case, both agpart and aeng are high
that makes the agent to take a conservative action follow-
ing the inherent Q-values. The high value of o prevents
the agent from learning. This means that the value of 3
and v make no effect in this case.

5.4 With learning on changing
environment

As we expected, the agent with an efficient learning abil-
ity emerged. Figure 11 shows a typical pattern of the
evolution, where fitness values widely vary because the
length of the optimal path of each maze randomly gen-
erated is also widely varies. The value of agiar becomes
low and the value of aeng becomes high as similarly as
the case of fixed environment where learning abilities are
acquired.

6 Conclusion

We investigated the relation between learning and evo-
lution under the different stability of the environment.
As we expected before experiments, learning abilities
emerged when the environment changed every genera-
tion, and inherent knowledge about the world was ac-
quired when the environment fixed. However, we are
surprised at the observation that learning ability could
emerge even when the environment fixed. We guess that

astart = 4.8, aeng = 2.2,
Bstart = 0.64, Beng = 0.37,7 = 0.82

Figure 6: Probabilities of action selection of the best in-
dividual at 500th generation — the case without learning
on changing environment.

this phenomenon happens because of our assumption of
genetic codes that only include some numerical param-
eters but do not mention any structural information of
learning mechanism. The observation that to change the
environment every generation causes evolutionary acqui-
sition of efficient learning abilities suggests us that the
condition of environmental change strongly effects the
structural emergence of learning abilities.

The results complement the work on genetic acquisi-
tion of evaluation network by Ackley and Littman, be-
cause we here focused on differentiation of adaptation
strategies, evolution versus learning. The range of learn-
ing rate # doesn’t include negative value, so the learner
always mentions the reinforcement signal at the goal po-
sition as reward, never as punishment. It is one of quick
experiments to make the range of § to include negative
value so as to consider acquisition of evaluation function.
Both of the experiments by Todd and Miller, and Ackley
and Littman, did not mention the relation between the
stability of the environment and evolutionary process of
learning abilities. The experimental results can provide
an extension of our knowledge in this field combining
with the pioneers’ results.

Starting from the first stage of the research described
here, our future work will include more precise investi-
gation of the effects of genetic parameters and develop-
ment of a methodology of structural emergence of learn-
ing abilities.
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Figure 7: An evolutionary process with learning on fixed
environment — 1.
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Astart = 2.8, aeng = 36.5,
Bstart = 0.25, Benqg = 0.81,7 = 0.98

Figure 8: Probabilities of action selection of the best
individual at 500th generation — the case with learning
on fixed environment — 1.
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Figure 9: An evolutionary process with learning on fixed
environment — 2.
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Astart = 61.2, aeng = 63.0,
Bstart = 0.80, Beng = 0.92,7 = 0.55

Figure 10: Probabilities of action selection of the best
individual at 500th generation — the case with learning
on fixed environment — 2.
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