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Abstract

This paper describes an alternative trial to simulate evo-
lutionary and developmental process of multi-cellular
plants in 3D Euclidean space. Starting from a seed
on the surface of the ground, each individual grows by
spawning daughter cells of each active cells. The rule
set of growth is encoded as a gene on the chromosome
that indicates the orientation of daughter cell and state
transition. The model is very simple but includes a type
of metabolism for absorbing water at the root under-
ground and photosynthesis at the cells above the ground.
Through the computer simulation of evolutionary pro-
cess by a genetic algorithm with a fitness measure given
by the number of cells, a variety of phenotypic shapes
which similar to moss have emerged.

Introduction

It is a feasible view that the growth of multi-cellular
plants is realized by an iteration of cell division, cohe-
sion, enlargement, reformation, and death. These activ-
ities are triggered by some chemical and physical events
on the cell itself guided by the genetic information on
the chromosomes it contains. Through a lot of efforts of
biologists, some details of species-specific developmen-
tal process have been revealed, and the wide variety of
complicated strategies of development aresometimes sur-
prising. To deepen our understanding of the foundations
of life, it is also important to build mathematical mod-
els of biological activities on a more abstract level, while
investigating concrete organisms in more detail.

One of the remarkable mathematical models of growth
of multi-cellular plants is the L-system (Lindenmayer
89), which provides a formal method with a type of
rewrite rule set to describe recursive processessuch as
growth. It has been widely used to draw computer
graphics images of many types of plants of both real and
imaginary species. L-system and its extended framework
are very useful not only for drawing but also for under-
standing formal aspects of morphology by clarifying how
wide a variety of shapes a simple rule set can generate.

In real biological organisms, the rule set for develop-
mental processes is encoded on the chromosomes: the
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Figure 1: Spawning a daughter cell in 3D space.

genotype, which has changed from simple to sophisti-
cated through billions of years of evolutionary processess
by adapting to its environment. It will be helpful to
combine models of evolution and development from the
stand point of Artificial Life in which we move towards
the intrinsics of life through synthesis. We designed a
model of the evolution of the development process, and
examined it via computer simulation.

For real natural organisms, various types of features of
physical and chemical entities and events affect the cell
activities. To avoid the complicated task to build a real-
istic model, many types of physical features are ignored
such as gravity, shade, weather, seasons, and so on. Our
model presented below does not use a discrete grid world,
but a continuous three-dimensional Euclidean space be-
cause it theoretically provides an infinite number of de-
grees of freedom to form a shape. This feature is impor-
tant to investigate evolution of sophisticated strategies,
although it consumes more computational resources.

In the following sections, we examine morphology,
metabolism, and evolution of our proposed model, and
then describe experimental simulations, the results and
close with some remarks.

Morphology

At an abstract level in the developmental process, each
cell decides its action according to the rules on the gene
conditioned by its own status. For a mathematical model
of cell division, we assume that the orientation of di-



vision is determined by two kinds of information: the
internal state, and the genetic information the cell con-
tains. Because of the difficulty of simulating all of these
complicated features, we assumed that (1) the cell sha-
pae be a sphere, (2) the cell size is constant, (3) cells do
not split but spawn daughter cells at an adjoining side,
(4) cells do not move from the original position where
they were born, (5) cells spawn daughter cells only if
there is enough empty space, and (6) each cell has its
own direction as one of the attributes.

Each cell has an attribute indicating whather it is ac-
tive or inactive. An active cell intends to spawn its
daughter cell at an adjoining side where the gene cor-
responding to the current state designates the relative
orientation. The internal states are represented by four
bit integers of which the most significant bit indicates
active (=0) or inactive (=1). The conditional part of
the development rule contains the current internal state.
The action part contains the relative orientation from the
cell’s direction to spawn a daughter cell, the daughter’s
initial internal state, and next internal state of itself.
Each information to decide the orientation of a daughter
cell requires a triplet of angles in 3D space as shown in
Figure 1. The total action part of each rule includes two
more four-bit integers and three eight-bit integers, that
is, 4 x 2+ 8 x 3 = 32 bits. Thus, one genome consists of
32 x 8 = 256 bits. Actually, we employ a look-up table
to represent these rules as shown in Figure 2.

On the initial seed, the state is zero, and the orienta-
tion is vertically upward.

Metabolism

The above model is very simple, but we added a type of
metabolism to

1. absorb water from root,
2. photosynthesize glucose for cells above ground,
3. evaporate water from cells above ground,

4. move water and glucose between mother and daughter
cell, and

5. consume an amount of water and glucose when spawn-
ing.

Each cell keeps track of the amount of water W and
glucose G it contains. These parameters are normalized
and range from zero to one. A cell under ground absorbs
water according to

AW = P, (1.0 — W) (1)

for each step, where P, is a constant. A cell above
ground looses water through evaporation by

AW = —P,W 2)
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Figure 2: Form of chromosome and gene.
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for each step, where P, is a constant. It also increases
glucose content through photosynthesis by

AG = P,(1.0 - G) (3)

for each step, where P, is a constant. Both water and
glucose move between mother cell and daughter cell ac-
cording to

AWm = _AWd =
AG, = -AG; =

Mw(Wd - Wm) (4)
My(Ga— Gm) ()

for each step, where AM,, and M, are constants, W,, and
G, are the values of the mother’s parameters and Wy
and G4 are the daughter’s parameters. Each cell can
spawn its daughter cell only when it is active, if it has
enough water and glucose (W > 6,,,G > 6,), and if there
is enough empty space for the daughter. After spawning
the daughter, water and glucose decrease by

AW = -6, (6)
AG = -6, (7)

where 6, and 6, are threshold values.
Photosynthesis of glucose consumes water via its
chemical reaction

6CO9 + 12H50 — CgH;206 + 602 + 6H50 . (8)

However we ignore this phenomeon here because a de-
crease of water through evaporation can account for this.
We also ignored other materials such as nitrogen and
other essential elements, because they will not affect the
shape as the result of the development process in this
simple model.

Evolution

The evolutionary process of natural organisms strongly
depends on inter-species interactions such as the food
web. Starting from the simplest settings, we examined
evolution by a Genetic Algorithm (GA) (Goldberg 89)
with pre-defined fitness function.
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Figure 3: 1/3 selection.

left individual
individual
selection group
right individual

Figure 4: Local selection using ring.

We use two types of generational GA in which ev-
ery individual in the population is initialized by a ran-
dom genotype and is tested through selection process
to decide whether it remains in the next generation or
not. First, to accelerate the evolutionary process, we did
not employ ordinary selection algorithms widely used in
GAs (such as roulette-wheel selection, ranking selection,
or any other probability-based selection mechanism) but
instead used a 1/3 selection algorithm as shown in Fig-
ure 3. In this algorithm:

(1) The best third of the population remains in the next
generation without any modification of genotype,

(2) the middle third of the population is replaced with
individuals generated using crossover operation between
the best third individuals and the middle third individ-
uals, and

(3) the worst third of the population is replaced with
mutants of the best third individuals.

In our second type of GA, we use a type of local se-
lection where individuals are arranged along a ring as
shown in Figure 4. The algorithm is similar to the 1/3-
selection described above, but selection is done among
local neighbors, that is:

(1) after evaluating the fitness, each individual obtains
for comparison the values of its nearest (left and right)
neighbors.

(2) it remains in the next generation without any modi-

fication if it is the best among these three individuals,
(3) it is replaced with the one generated by crossover
with the best one; and

(4) it is replaced with a mutant of the best one.

As some researchers pointed out, GAs with local selec-
tion have an advantage to approach the global optimal
solution because they can keep more diversity in the pop-
ulation than global selection (Sarma 97). It is better not
only as an optimization algorithm but also as a model
of natural selection, because the competition among real
organisms must always be local.

Experiments

Using as fitness measure the number of cells after allow-
ing growth for a constant number of steps, the results
of our simulations showed a wide variety of phenotypic
shapes as shown in Figure 5.

State transition networks of development rules for in-
dividuals can be drawn as shown in Figure 6, viewing
the active part of gene as an automaton. Networks in
Figure 6 correspond to phenotypes shown in Figure 5.
From this figure, we can see that the genotype of larger
phenotypes includes cyclic transitions which can produce
a recursive structure of development.

Evolutionary processes using fifty distinct random
number sequences for each selection strategy are shown
in Figure 7. It is clear that local selection leads to better
fitness more often than global 1/3-selection.

Conclusion

We designed a model to study the evolution of botan-
ical development in 3D Euclidean space and a sim-
ple metabolism, and examined the evolution with two
types of selection algorithms. Via experiments described
above, we observed that a variety of phenotypic shapes
reflecting effective strategies for efficient body growth
have emerged. These shapes resemble a kind of moss
because they tend to spread on the ground. Compar-
ing two different strategies for selection, local selection
appears to be better than global selection for reaching
better solutions.

The results of the simulations presented above are only
a sample of forms we found. Though one might conclude
that this provides possible evidence for the diversity of
forms that emerged through evolution, we should inves-
tigate more thoroughly the effects that different parame-
ters have on the process of evolution, before more fruitful
results can be obtained from the point of view of biology.

We are also considering some directions to extend
the model described above, such as physical interaction,
chemical diffusion, differentiation, life cycle and ecology.
A combination of this research with other morphologi-
cal research such as (Fleischer 96) and (Onitsuka 96),
and artificial botany such as (Colasanti 97) might pro-
vide the inspiration for progress with this research in the
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Local selection, 542 cells

Figure 5: Typical phenotypes that emerged from evolution through 500 generations in 400 steps per one generation,
whith a population size 36. Cells are drawn as spheres in the lef thand figure, while line segments between the centers
of mothers and daughters are drawn in the right hand figure. The upper left figure of each is the top view, the right
figure is the right view, and lthe ower figure is the front view. The parameter settings are: P, = 0.1, P, = 0.01, P, =
0.1, My, =0.02, M, =0.02,6,, = 0.2,0, = 0.2.



N

@{;Q SN
& o
local selection

Global 1/3 selection

Figure 6: State transition networks of development rules
produced through evolution. S indicates the initial seed,
and TA indicates inactive. Dashed arrows indicate tran-
sitions from mother to daughter. These networks are
generated for the phenotypes shown in Figure 5.

near future.
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Figure 7: Evolutionary processes of fifty distinct random
number sequences, and comparison between average val-
ues of best fitness of global and local selection.



