An IEC-based Support System for Font Design*

Tatsuo Unemi and Megumi Soda'
Department of Information Systems Science
Soka University
1-236 Tangi-machi, Hachioji, Tokyo 192-8577 Japan
unemi@iss.soka.ac.jp, msoda@intlab.soka.ac.jp

Abstract — This paper describes our first trial to build
a prototype of support system for font design utilizing
the technique of Interactive Evolutionary Computation.
The target domain is Japanese Katakana constructed
from very simple stroke elements. Some parameters for
drawing elements are encoded on the genome of each
candidate individual. Starting from the initial popula-
tion of sixteen individuals with random genes, the user
can breed his/her favourite fonts through the graphical
user interface based on a framework of Simulated Breed-
ing. Fach candidate is shown in the sub-window with a
sample word arbitrarily set up by the user. We certified
that it effectively works to produce a type of expressive

glyphs.

Keywords: Interactive evolutionary computation, de-
sign support system, font design.

1 Introduction

The Interactive Evolutionary Computing (IEC) [4]
has been recognized as a useful method to support hu-
man creativity through many types of artistic and engi-
neering works in this decade. However a lot of fields are
not revealed yet though ITEC must be useful for them.
Font design is one of this kind of fields in which only a
few experts can do meaningful jobs so far. The needs
of expressive font glyphs are not only for professional
graphic designers but also for ordinary people who wants
to build his/her own unique web pages. It is valuable
to make it easy to design font glyphs as users want.

Some researchers have tried to build simple systems,
such as Butterfield and Lewis [2] for Roman Alphabet
and Chan Kwai Hung et al [3] for Chinese characters.
The former takes an approach of deformation from exist-
ing font shape for typographical art works, and the lat-
ter is still in development process for complicated struc-
ture by multiple abstract level representation. Butter-
field and Lewis employed a parametric font definition
where letters are individually deformed by collections

*0-7803-7952-7/03/$17.00 © 2003 IEEE.
TCurrently working at TGL, Osaka, Japan.

of implicit surface primitives for side effects of 3D com-
puter graphics in “Houdini,” a well known commercial-
based software for 3D animation. They created some in-
teresting animation movies including deformed letters.
These challenges are helpful toward more practical ones,
but this field is still in the very early stage though there
are many possible approaches for many types of charac-
ters and many directions of objectives.

This paper describes our first trial to build a proto-
type of support system for font design utilizing a tech-
nique of IEC. As the first step toward a practical appli-
cation system, we designed and implemented a possible
method for a very simple but complete prototype sys-
tem. The following sections describe the method we
took but doesn’t include any performance evaluation of
the system because it is very early stage.

2 Font representation

There are many types of characters and glyphs in the
world. Some are very complicated and some are simple.
We choose Japanese Katakana as the first target because
it is relatively simple in both terms of structure and
elements.

There are two types of data representation of glyph.
The first one is by bitmaps, and the second one is by
scalable vectors. The former method is used in small
font and is not suitable for large font due to the size
of memory needed. In recent years, as the computa-
tion power and the resolution of displays and printers
improved, the vector representation became to be the
popular standard. By this reason, we employ a scalable
vector representation for font glyphs here.

To guarantee that the produced glyphs are readable
as identical to original letters, we use the fixed strokes as
the skeleton for each character and encode the param-
eters for drawing the elements along the skeleton. The
strokes of both skeleton and outline are represented by
cubic Bezier curves for convenience of both preparing
the skeleton data and programming in Java on MacOS
X. We drew a set of strokes for the skeleton data using a
drawing tool “Adobe Illustrator” then saved them into
files of Scalable Vector Graphics (SVG) [6] format. It

7
|

Figure 1: Examples of skeleton strokes of Katakana.
These are three letters ¢, ro and ha from left to right

AN
K /* it) \
‘%%géEZ¥7ﬁE;
Figure 2: Examples of glyphs as a part of the final prod-
uct.

YA

e

is not so difficult to read SVG data to translate them
into internal representation on Bezier curves because it
follows XML tag format. Figure 1 shows examples of
skeleton strokes we used. All of the skeleton data are
listed in Appendix A at the tail of this paper. The core
tags representing stokes of the left letter “s” of Figure 1
in SVG format are:

<path d="M32.31,17.322v42"/>
<path d="M48.644,0.322\
c0,0-25.5,30.833-48.5,37.5"/>

The upper tag means a vertical line segment starting
from (32.31,17.322) with the length 42. The lower tag
means a cubic Bezier curve starting from (48.644,0.322)
of which co-ordinate of the end point is (48.5, 37.5) rel-
atively from the start point and relative co-ordinate of
control points are (0,0) and (25.5,30.833). The co-
ordinate system of these data is vertically flipped with
ordinary mathematical system, that is, the upper left
corner is the origin and co-ordinate of vertical axis in-
crease by moving downward.

One segment of Bezier curve is represented by four
pairs of 2D co-ordinates, start point, end point and two
control points. The trajectory of the curve is defined as
following parametoric equation:

b(t) = (1 — t)°Fs 4+ t(1 —)28 + 2(1 —)& + t35. (1)
for 0 < ¢t < 1 where ps is the start point, p, is the end
point, and ¢; and ¢ are the control points.

The final product of the system is a font containing
a set of glyphs. A glyph, a representation of shape of a
letter, is represented a set of outline segments in a form
of Bezier curves. The data of this format can easily
converted to a scalable font file widely used for personal
computers, such as PostScript font. Figure 2 shows ex-
amples of glyphs.

80 BIFRE

Generation 1

Next generation in th;s / new window.

= 2N ‘/F‘E 74>k
DAFLE AT WP

VAT A
> ’V'L /X‘?JE

F /N
?REA
4 :/F 2 /A“? = /
AT A|‘/7\T
7 /N7
IR

Figure 3: An example of the field window.

3 Basic flow

The system works as follows. Just after the initializa-
tion of the system by reading skeletons from disk files
written in SVG format into the memory as NSBezier-
Path [1] instances, the user is prompted to input a sam-
ple words in Katakana for visualization. Then the field
window appears on the screen that contains sixteen sub-
windows each of which shows a candidate drawn using
an individual genome of the initial population initial-
ized by random genes. The user can breed the glyph on
this window in a way of Simulated Breeding [5]. Figure
3 shows an example of the field window. As Figure 4
illustrates, the user iterates a cycle of selection and gen-
eration change until he/she obtain an acceptable result.
The user selects his/her favourite individual(s) from the
field window by clicking sub-windows, and pushes the
button of “next generation.” As the result of these op-
erations, the new population of offspring is generated
by mutation and crossover; and the old population is
replaced with them if the user chose “in this window”
button, or a new field window filled with the offspring
is created if “in new window” was chosen. The user can
also create a new field window of another initial popula-
tion in which he/she can operate independent breeding
process. Any individual can migrate between different
field windows by user’s drag € drop operation.

The user can examine arbitrary size of sample draw-
ings by using zoom window for any individual in the
current field window. The sample words can be arbi-
trarily changed in any time the user wants. The user
may use this system not for creating complete set of
glyphs as a new font, but for designing typography of
specific words. For this purpose, the user can easily ex-
port the produced outline of target words into another
graphics tool by copy & paste operation from the zoom
window.

Figure 4: Flow of simulated breeding.

4 Morphology

The one of key issues to develop a successful IEC ap-
plication for a new field is the method to parametarize
the target object. In other words, we must define (1)
gene coding, (2) morphology, and (3) visualization. The
gene code should express rich space of target beyond the
users’ imagination, and simultaneously should restrict
the space within the range of acceptable candidates. It
is difficult to cover whole of the possible space, so it
is helpful to examine a various types of alternative ap-
proaches for improvement of this field.

We designed a prototype genome consisting of a num-
ber of floating point numerical values concerning three
kinds of phenotypic features as follows.

4.1 Thickness of elements

The first three genes are for the thickness of each el-
ement stroke. They are mapped onto the parameters
of

(i) thickness of the start point,
(i) thickness of the end point, and
(iii) thickness ratio by angle;

for the phenotype. Figure 5 shows the effect of the genes
(i) and (ii). Each skeleton stroke is transformed into a
shape represented by four connected segments as the
outline where the thickness at start and end points are
calculated from genetic information. Each value of all
of genes are with in the range [0, 1], and the concrete
value of thickness is calculated by multiplying the gene
value, the predefined maximum value of thickness, and
the ratio by angle. The ratio by angle is to vary the
thickness depending on the absolute angle of line con-
necting between the start point and the end point, and
the value R, is calculated by

R, = 1—(1—7%)L(p.—ps) (2)
[2951 if05<gs<1
Ga = {1—293 if0<g3<0.5 (3)

thickness of start point

skeleton stroke

thickness of end point

Figure 5: Example of glyph element produced from a
skeleton stroke.

thickness ratio by angle

0 0.2 0.4 0.6 0.8 1
|Z (ﬁe - ﬁs)l

Figure 6: Relation between angle and thickness ratio
where v =1/8.

where 7 is a constant of (0,1) and g3 is the gene value
of (iii) listed above. Figure 9 illustrates the relation
between angle and thickness ratio where v = 1/8. The
ratio is always proportional to the angle. The ratios for
vertical and horizontal elements are 1 and ~y respectively
when g3 = 0. The ratio for any angle is 1 when g3 = 1/2.
The ratios for vertical and horizontal elements are v and
1 respectively when g3 = 1.

4.2 Shrinking ratio of small characters

The forth parameter is the shrinking ratio of small
letter against normal letter. Usually twelve small letters
are used in Katakana set specified in the character code
system of Japanese Industrial Standard. It is sometimes
useless but has important effect when the sample string
includes small letters. The value of shrinking ratio is

a2

small normal

Figure 7: Example of normal and small letters.

86

89

Figure 8: Example of linear deformation of co-ordinates.

calculated by linearly transforming from the range [0, 1]
of gene into [0.3, 0.9] for coefficient because it is difficult
to distinguish small letters from normal ones if the ratio
is greater than 0.9 and the letter is too small to read if
it is less than 0.3.

4.3 Deformation of skeleton strokes

The other type of parameters we examined are for de-
formation of skeleton strokes. There are many possible
filter of two dimensional vector graphics, but we imple-
mented only the linear shifting of co-ordinates with six
real number parameters. Figure 8 illustrates how these
parameters deform the original strokes. First two pa-
rameters of six correspond to the vector of shifting the
upper left corner of original co-ordinate system. The
second two and final two respectively concern the upper
right and the lower right corners. If the size of orig-
inal frame is assumed to be 1 by 1, the transformed
co-ordinate (u,v) from (z,y) is calculated by

1
u = ;(xl(y —xy) + z2xy + x3(T + 2Y) — 02) (4)
1
vo= ;(yl(y —xy) +y2xy +ys(z +2y) —oy) (5)
g = max(max(azg, 1’3) - Oxamax(y17y2) - Oy)a (6)

where (z1,y1), (z2,y2) and (z3,ys) are respectively the
co-ordinates of upper left, upper right and lower right
corners of the transformed frame, o, = min(0, z1), and
o, = min(0,y3). The co-ordinate of each corner is cal-
culated by adding modified gene value to the original
position as follows.

(x1,51) = a(295 — 1,296 — 1)
+(—a/2,1 —a/2) (7)
(x2,92) = a(2g7 — 1,298 — 1)
+(1-a/2,1—a/2) (8)
(z3,y3) = a(299 —1,2g10 — 1)
+(1—«/2,—a/2). (9)

where « is a constant of (0,1] for the width of shifting.
The value 0 makes no effect for any gene value. If & > 1,

Figure 9: Relation between random number A and the
result value g. where p = 0.8.

parent 1 parent 2

LTI T EEET T

child

Figure 10: Crossover operation by combining genes from
randomly selected parent.

it possibly produces twisted letters difficult to read in
some combination of gene values. We employed v = 1 in
our current implementation determined through several
times of trials with a variety of values of a.

5 Mutation and crossover

As described before, genome of the selected individual
mutates to produce its offspring when only one individ-
ual was selected. If there are more than one individuals
selected, then crossover operation is applied instead of
mutation. In both cases, the data structure of genome as
the object of the operations is a vector of floating point
numbers where each element value is within [0,1]. To
make the search by genetic operations, selection, muta-
tion and crossover, to be effective, we implemented the
mutation by adding a random portion toward the value
boundary of ether lower or upper, as represented by the
equation

g :{ gp — 1(1—2X) gp
¢ gp + (2 = 1)(1

if A <0.5

otherwise (10)

—9p)

where g, is the gene value of the parent, g. is the gene
value of the child, A\ is a random real number within
[0,1], and g is a constant within [0,2] that specifies
the width of mutation. Figure 77 shows the relation
between the random number A\ and the result value of
mutant g. for various values of g, when y = 0.8.

A QNSNS TFY R

AN\ RAR TN T
AN RARF X)L

ATNSTNNFUR)

Figure 11: Sample fonts bred with the IEC system with-

/fﬂ/‘?ﬂf/*’;f']f’ﬂ?
FURNS

1 O\ R\
A aAN=—"FRAFFU LT
AVPZFrYTYZNVT

Figure 12: Sample fonts bred with the IEC system with
skeleton deformation.

Crossover is done by combination of the parts of
genomes from parents. One of two parents is randomly
chosen for each gene as the source. Any gene, a floating
point number of single precision, never divided into bits;
otherwise it might cause an error of numerical calcula-
tion. Figure 10 illustrates this operation.

6 Results

Through several times of experimental use by the au-
thors and other students, we certified that the prototype
system works well and is able to produce many types of
fonts. But the most noticeable drawback we found is the
poorness of the search scape. IEC technique is useful
for a multi-dimensional space and/or open-ended space
where it is difficult for a human to explore efficiently,
but this prototype has only ten parameters. In spite of
this drawback, we could obtained several types of fonts
of a various kinds of impression even if the effects on
deformation of skeleton strokes are omitted as shown in
Figure 11. Figure 12 shows the effects of deformation.

7 Future extension

There are a lot of candidates for parameters we should
introduce as the next improvement.

1. Non-linear deformation, such as wave form, circu-
lar shape, partial expansion and shrink, and so on,
similar to Butterfield and Lewis’ approach may be
an easy and effective direction of extension.

2. Shape of the start and end edges of strokes can be
alternated. The easiest extension might be intro-
duction of round shape.

3. Ornaments of the start and end edges of strokes
are also useful to extend the richness of product
candidates. One of the typical ornaments is serif
used in Times Roman font.

8 Conclusion

We proposed an alternative approach for IEC appli-
cation for font design. By dividing the representation
of a glyph into skeleton and elements, it becomes easy
to keep the result phenotype as a character and simul-
taneously to enrich the search space.

The work for enrichment remains as our future task,
but it will be a promising starting point for more flexible
system by adding the other features for ornamenting the
elements and deforming the skeletons.

We built a simple prototype of font design system uti-
lizing IEC technique. The method to represent a glyph
in the combination of structure and elements is useful
for IEC application.

As our future works, we will extend and examine the
prototype by adding more features on parameters and
by applying another type of characters such as Roman
Alphabet, Japanese Hiragana, Korean Hangul, and oth-
ers.

References

[1] Apple Computer Inc., 2003, Application Kit Java
API Reference: NSBezierPath, Cocoa Developer
Documentation.

[2] Butterfield, I. and Lewis, M., 2000, Evolving Fonts,
http://www.accad.ohio-state.edu/ "mlewis/AED/Fonts/

[3] Chan Kwai Hung et al, 2002, Chinese Font Designing
with Evolutionary Techniques,
http://people.sd.polyu.edu.hk/~sdkhchan/my_project_1.html

[4] Takagi, H. 2001, Interactive Evolutionary Computa-
tion: Fusion of the Capacities of EC Optimization
and Human Evaluation, Proceedings of the IEEE,
Vol. 89, No. 9, pp. 1275-1296.

[5] Unemi, T., 2003, Simulated Breeding — a Framework
of Breeding Artifacts on the Computer, Kybernetes,
Vol. 32, No. 1/2, pp. 203-220.

[6) W3C, 2001, Scalable Vector Graphics (SVG) 1.0
Specification, W38C Recommendation, REC-SVG-
20010904.

FATTA
hF00=
T X/
7 I T
=X
INE TATR
?7,A%a,

AT
J

