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Abstract: This paper describes a challenge of investi-
gating what sorts of collective behavior could emerge
by a group of learning agents. Reinforcement learning
is a suitable framework to consider the design of an au-
tonomous agent because it is on learning by delayed
reward and blame. We propose taxonomy of types
of interaction among learning agents, show some ex-
perimental results of computer simulation on a group
of reinforcement learning agents in a task of foraging
and collision avoidance, and then discuss about etho-
logical, sociological, and engineering application of a
variety of phenomena.

1 Introduction

Through many researchers’ efforts of trying to understand
the information processing mechanism on human intelli-
gence and to apply that knowledge to designing intelligent
machines, it has been obvious that learning is one of the
essential functions required to realize an intelligent behav-
ior. In the other hand, distributed autonomous systems
have also been mentioned as one of the advanced tech-
nology to make an intelligent system more robust and ca-
pable of more complex and larger scale tasks. There are
many research activities of these areas, such as [1] and [2]
in Japan.

This paper describes a challenge to investigate what
sorts of collective behavior could emerge by a group of
learning agents. We are expecting this challenge to con-
tribute to both engineering and sociological research. In-
tuitively saying, if we would execute a sophisticated sim-
ulation, we could observe some kinds of social phenom-
ena such as chaotic patterns by interaction among many
agents, acceleration of learning by competence, and hier-
archical differentiation of behavioral styles. However, it is
difficult to find any framework to catch this area clearly,
so far.

The following sections describe current activity of two
related fields, a taxonomy of types of interaction among
learning agents, some experimental results of computer
simulation on a group of reinforcement learning agents
on a task of foraging and collision avoidance, and then
discuss based on the observation from the experiments.

2 Collective Behavior of Autonomous Robots

In recent few years, a number of researchers are getting to
agree that a very simple control mechanism for a robot,
such as a set of reactive rules, can be superior to a tradi-
tional sophisticated control architecture in many appli-
cation fields, for instance [3, 4, 5]. Studies on collec-
tive behavior by a number of autonomous mobile robots
of simple control mechanism are also active, inspired by
flock of birds, school of fish and social insects, such as
[6,7,8,9, 10].

However, almost all of these works do not mention
any type of learning, but only use fixed control rules de-
signed by human. There are studies on self-adjustment
of control parameters[11] and adaptation through an evo-
lutional process using genetic programming[12], but we
can find no literature so far on emergence of collective
behavior by learning agents, which may be interesting for
sociologists and A-Life people.

3 Reinforcement Learning

We employ a framework of reinforcement learning[13] to
design the learning algorithm of a single agent, because it
is suitable to consider an autonomous agent which learns
by delayed reward and blame. There are some studies on
the mathematical foundation and the extension toward
some fielded application specially in robotics, such as
[14, 15, 16, 17, 18, 19]. Almost all of these researches are
on a single learner, but recently a paper concerning learn-
ing by multi-agent was presented[20] which focused on
comparison of learning performance between some kinds
of information sharing among agents.

The rest part of this section describes a preliminary
formalism of reinforcement learning and a brief introduc-
tion of an instance-based reinforcement learning method
employed for our experiments.

3.1 Formalism

Difference against an ordinary definition is that reinforce-
ment signal 1s not coming from environment but is calcu-
lated by internal function named evaluator which refers
the sensory input data. This idea seems more suitable
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Figure 1: Block diagram of information flow of a learner.

when a learner is seen as an autonomous agent with abil-
ity of unsupervised learning.

Figure 1 shows the block diagram of information flow
in a single agent. Table 1 indicates relations between func-
tions and data.

The state of environment is determined from its pre-
vious state and the action of the agent. The sensor calcu-
lates the sensory data from the state of environment, and
the function named policy computes the action data of
the agent referring the sensory data and the internal state.
The internal state is changed by the function named learn-
img based on the sensory data, the action data, the rein-
forcement signal, and the previous internal state. These
five functions and five kinds of data determine the speci-
fication of reinforcement learning.

3.2 Instance-based Reinforcement

Method

Learning

Many sorts of methods to realize reinforcement learning
have been proposed, such as using artificial neural net-
works, look-up tables, and so on. The method employed
in our experiments is an instance-based approach we pro-
posed before[22], which is applicable to a domain where
the input is a vector of real numbers and the output is
a symbol selected from relatively small finite set. In this
method, a set of memory of agent’s concrete experience is
used as an internal state of an agent. The learning func-
tion stores a tuple of the sensory data, the action data
and its estimated evaluation in memory verbatim. The
policy function decides the action by retrieving a similar
and valuable experience from memory. If it has no tuple

similar and valuable enough, it takes a random action.
The evaluation of the experience at time ¢ is a dis-
counted cumulative rewards, which is defined as

[}
_ E i—t
vy = Y -
i=t

where v is constant of 0 < v < 1, and r; is a reinforcement
signal at time ¢. Each experience is stored in the queue of
fixed length N while the reinforcement signal is zero, and
the estimated value v; of v; is computed when the rein-
forcement signal becomes non zero, where the difference
value for its modification is defined as

Af)]' =477y

where r; # 0.

The key issue on any instance-based approach is how
to avoid infinite increase of memory elements[23]. TIn
our method, when the agent suffered the new experience
which is very similar to an old experience already stored
in memory, it discards the old one if the estimated eval-
uation of the new one is greater than of the old one, and
otherwise it modifies the estimated evaluation of the old
one. Additionally, it manages the reliability of each expe-
rience to forget the least reliable one when the capacity
of memory has been exceeded.

One modified version of this method for learning only
by negative reinforcement has been applied to cart-pole
(inverted pendulum) balancing problem, and it is certified
to perform better enough to realize a real-time control[24].

4 Taxonomy of Learners’ Group

We can use the following features when we consider a
taxonomy of the types of learners’ group.

e Which data are shared among learners?
e Which functions are shared among learners?
e Which data are of same type among learners?

e Which functions have same definition among learn-
7
ers’

That is, degree of information sharing and similarity of
definition on both data and functions specify the type of
group of learners. Let us consider about some typical
cases from this point of view.

4.1 Sharing Environment

One of the simplest types of group is of sharing only
their environment, which means they are in the same local
space. In some domain, it is required to distinct among lo-
cal, global and intermediate range of environment shared.



Table 1: Relations between functions and data.

Function
Effector | Sensor | Evaluator | Policy | Learning
Environment D/R D - - -
Action data D - - R D
Data Sensory data - R D D D
Reinforcement - - R - D
Internal state - - - D D/R
D : domain, R : range, — : not related.

It may be also possible to consider a group in which
the members are not sharing their environment, but it
is hard to find any kind of collective behavior by them.
Sharing environment is the least requirement for collective
behavior of autonomous agents.

Of course, 1t is not necessary for the data of the en-
vironment shared by the agents to be quite equal each
other, but any agent must share some portion of the data
with another agent. We can draw a simple graph where a
vertex 1s an agent and an edge presents the data sharing
between agents. It 1s meaningful to mention a collection
of agents as a single group only when this graph is con-
nected.

4.2 Homogeneous vs. Heterogeneous

Variety of the agent types is also an important feature,
which concerns the similarity of definition of data and
functions. When we design a huge number of agents such
as in swarm intelligence[10], it is very difficult to spec-
ify many different functions for each agent, so we need
some degree of common specification among them. We
can also design a group of a variety of specialists such as
CEBOTI21], which provides efficient realization of various
types of tasks.

In the natural animal world, we can observe both types
of group behavior. Social insects, such as bees, ants and
termites, have intrinsic morphological differentiation. Si-
multaneously, it is known that there are social hierarchy
in a society of wild dogs, horses and monkeys.

One interesting issue on a group of homogeneous learn-
ers is the emergence of hierarchical differentiation of indi-
vidual behavioral styles, which means a functional change
from homogeneous to heterogeneous.

4.3 Sharing and Difference of Goals

Specially in the case of learning agent, it is important to
consider the relation between the goals of agents. It is an
issue about feature of the evaluator. If the agents share
a common goal, some of them may become idle because

the others achieve their common goal. In this case, help
behavior may also emerge. When each agent has a same
goal but goal achievement of an agent does not have an
effect on the others, there arises conflict between agents,
and we can expect that conflict avoidance behavior may
emerge.

4.4 Communication

Communication between agents can be seen as a method
of information sharing, but usually it means partial shar-
ing.

There are many interesting issues concerning commu-
nication between learners, such as emergence of commu-
nication protocol and language, strategy of active query,
and so on. Emergence of language or the origin of natural
language 1s the big problem including philosophical issues
on human beings.

5 Experiments

We design a group of reinforcement learning agents
and their environment as a computer program based
on our previous work which proposed an instance-based
reinforcement learning method examined by a foraging
task[22]. There is no communication between the agents,
and they have quite same specification of data types and
functions except the evaluator. We examined two cases
where all of agents have same function of evaluator and
where the half of them have the same but the others have
another kind.

Each agent 1s a kind of artificial insect which roams
around two-dimensional Euclidean space to seek its fa-
vorite foods avoiding obstacles and other insects. The
imsect has two sorts of sensors, vision and touch, and has
one sort of action, argument of turn. A datum of vision
is a vector of nine pairs of integers. One integer of the
pair is a value from 0 to 8 which indicates the distance to
the nearest object in the corresponding part of view. And
the other integer indicates the sort of the object. Each
element of the vector is corresponding to the distinct di-
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Figure 2: Sight of the insect.

rection of the view as shown in Figure 2. A datum of
touch is the sort of object the insect touched at that step.
The action of the insect is to change its position and di-
rection in the world. In each of simulation steps, it walks
by a constant length of step and turns left or right by
some amount of argument according to the output which
is an integer —1 and 1. The evaluator outputs the value
1 when the insect touches its favorite food, —1 when it
touches another kind of food, an obstacle and another in-
sect, and 0 if nothing, so that the objective of the insect
is to feed its favorite foods as frequently as possible, and
simultaneously to avoid collision.

Formally saying, the input on each learning cycle is a
two-dimensional array of integers, the output is a symbol
selected from a priori known finite set, and the reinforce-
ment from the environment is +1, 0 or —1 usually being
0, that is, in the manner of delayed reinforcement.

Each food disappears when the insect touches it, and
it appears again when the insect has walked away from it
for some amount of distance.

The above specification is common among experimen-
tal settings shown in this paper, and we prepared the
following two kinds of settings.

1. All of insects have same preference of foods and
there is no food of another kind in the world.

2. Two kinds of insects and their corresponding fa-
vorite foods exist in the world. The number of in-
sects of each kinds are equal.

We examined the cases of four insects and eight insects
for each of the two kinds of setting shown above, totally
four cases. Figure 3 shows an example of their traces.

In all cases in these experiments, we observed that
each learner adapts its environment step by step even
though fluctuation of the performance occurred some-
times. As we previously expected, the more the number
of agents is, the more learning is difficult.

6 Discussion

In this section, we discuss about emergence of collective
behavior by learning agents based on the results of exper-
iments.

6.1 Effects of the Number of Agents

Learning becomes more difficult when the environment is
not stational. In the situation where a number of learners
are in the same space and they can observe each other,
stationality of the environment is rapidly lost as the num-
ber of agents increases, because the environment of one
agent includes the other agents observed and the behav-
ior of learner changes through the learning process. It is
obvious phenomena since learning is a change occurring
in the internal state to alter its performance so that it
achieve its own objective.

These effects can be said to come from the density of
agents rather than the number of them, becase the prob-
ability of encountering of the agents becomes low when
the agents goes more sparse.

6.2 Relation between Different Species

An agent which has a different kind of favorite foods can
be seen as of a different species. It is expected that distinc-
tion of living place would emerge. Yes, we observed this
phenomena in the experiments of the case of two kinds of
foods. However, the reinforcement leaning agent always
has possibility to take a random walk to explore the world
to seek unknown paradise. So, sometimes the distinction
is destroyed by invaders who are tending to explore the
world. If all of agents take a conservative exploration
strategy, that is, they have never tend to take any risky
action when they know any action not so wrong, this kind
of fluctuation is harder to occure. Note the fact that con-
servatism make the learning rate low. This means that
there is a dilemma between learning rate and stationality
of collective behavior.

7 Conclusion

The above experiments are only in the first stage of our
challenge to collective behavior of autonomous learning
agents. To understand more about this issue, we need
to try a lot of other settings such as goal sharing, more
heterogeneous agents, large scale space, and so on. And,
we need also a quantitative analysis through statistically
enough times of experiments. These are our works in near
future.

Both distributed autonomous system and learning sys-
tem must be key technologies to build a intelligent ma-
chine in the next century. The author hopes that this
research can make any contribution to both designing a
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more intelligent machine and analyzing complex social
phenomena in human society.
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