
A method to embed human knowledge to reinforcement
learning method∗

Tatsuo Unemi†

Dept. of Information Systems Science, Soka University, Japan

unemi@iss.soka.ac.jp

October 5, 2000

Abstract

Reinforcement learning is a framework to learn from delayed reward and punishment
for a model of both animal and robot learning. To make it more practical to design an
intelligent machine, it would be better to be able to combine with human knowledge. This
paper presents a method to introduce such a knowledge into a reinforcement learning
system by embedding it as an intrinsic behavior, just like as animals acquired in the
genetic information. Through two types of experimental simulation on mobile robot
navigation, we show the effect of combination of episode-based reinforcement learning
and intrinsic avoidance behavior. The result clarify that it is possible to improve the
performance drastically by introducing relatively simple knowledge.

1 Introduction

Reinforcement learning (RL) is one of the key functions of animal learning in which the learner
discovers better strategy to avoid harmful stimuli and to obtain pleasant sensation through its
own experience. At the same time, it is also a suitable model for intelligent machines to adapt
against unexpectable environment. A number of researchers have proposed different types of
basic algorithms to realize this type of learning from delayed reward/punishment by machines,
and a lot of orientations to extend this framework have also been proposed to apply them to
more complicated practical problems.

One of the key issues for successful application of RL framework is to design an intrinsic
behavior to try promising actions at the start point of learning, because RL methods are
based on the iteration of trial and error. Learning does never progress if the trials always fail.
The task domains in any researches and applications of RL using random actions have been
designed or modified so that the learner has a chance of enough probability to try better action
even if it acts randomly.

Natural animals never act randomly in their infant period but behave in some manner of
useful trial to organize sensor-motor coordination necessary for survival. This paper focuses
on a case study to certify the effect of a hand-coded intrinsic behavior through a computer

∗A part of this paper has appeared in the proceeding of the sixth international conference on intelligent
autonomous systems (IAS-6) edited by E. Pagello et al held in Venice 25-27 July, 2000 as “Scaling up rein-
forcement learning with human knowledge as an intrinsic behavior.”

†A part of this work was done at AI Lab., IFI, University of Zurich, Switzerland during the author was
staying as a visiting professor.

1



simulation of relatively simple task in which it is difficult to learn only by random actions. The
basic idea was already proposed in our previous work[1], in which we examined combination
of instance-based RL and Fuzzy rules. The new points of this paper are to use more powerful
RL algorithm and weaker intrinsic strategy, and to try experiments on more difficult task for
more precise comparison.

The following sections describe episode-based RL method that we employ as a basic algo-
rithm to combine with an intrinsic behavior, our experiments on the computer simulation of
path finding by a mobile robot with local sensors on two different types of mobility, and then
its results and remarks.

2 Episode-based reinforcement learning method

We employ a modified version of episode-based reinforcement learning method (EBRL)[2] as
the basic algorithm to which we add an intrinsic behavior, because this method makes it easy
to measure how strongly the learner believes that the action leads better results. Additionally,
it is capable to be applied to a non-Markovian domain, that is, context sensitive and/or with
perceptual aliasing. This is not a necessary condition for this research but it is important to
prepare somewhat complicated task to clarify the usefulness of the proposed method.

The main loop of performance is iteration of sensing, deciding and executing an action,
acquiring reward, and then learning, in just same manner of ordinary RL methods.

2.1 Memory

EBRL can be seen as a derivative of instance-based learning (IBL)[3] in terms of learning
by memorizing input/output pairs without any reformation. In IBL, the memory is a set of
input/output pairs, but it is a set of their sequences in EBRL. An episode is a sequence of
memory elements each of which contains one sense-action pair with two additional parameters,
reliability and utility. The learner has a memory storage of fixed capacity to memorize episodes,
and it forgets a memory element of the lowest reliability when there is no more room to store
new experience. Reliability of each memory element decreases in each simulation step by
multiplying a positive constant less than 1 named time discount rate. Reliability is modified
also in the process of learning described later.

2.2 Recall table

To catch up the current context in the learner’s mind, the learner keeps a number of pointers
for memory elements which seems similar to the current situation. The table containing
these pointers is named recall table. Each element of the recall table is a pair of pointer and
weight which indicates similarity between the memorized episode and the current situation.
The learner replaces each element by the pointer of next memory element following along
the forward link in the memorized episode, and modifies the weight by combination with the
similarity between the sensory data in new element and current sensory input by:

∆Wi = α · (S(Mi, s)− Wi) (1)

where Wi is the weight of ith element, S(Mi, s) is similarity between the current input s and
the memorized data Mi pointed from ith element, and α is a constance of (0, 1). Additionally
to renewed elements, the other memory elements similar to the current sensory input are also
candidates of recall table elements. Assigning the value of similarity as the weight of newly

2



recalled memory element, Nr elements of the candidates with relatively larger weights remain
in the recall table, where Nr is the capacity of the table.

Similarity S(x, y) between vectors x and y of real numbers is calculated by the following
equation.

S(x, y) = 1−
√√√√ 1

2n

n∑
i=1

(xi − yi)2

Vi
(2)

where n is the number of elements in a vector, xi and yi are ith element of x and y respectively,
and Vi is the variance of ith element among all of memorized data. This equation is a simplified
version of the original one in [2].

It should be modified into any other form if sensory inputs include different types of modal-
ity, such as distance sensors and touch sensors. Here we employ simple weighed sum of simi-
larity values among different modalities, as the revised version of the definition.

S(x, y) =

∑
j wjS

′(xj , yj)∑
j wj

(3)

S ′(xj , yj) = 1−
√√√√ 1

2nj

nj∑
i=1

(xi
j − yi

j)
2

V i
j

(4)

where x and y are sets of vectors, nj is the number of elements of vector xj , and xi
j is the ith

element of vector xj .

2.3 Policy

The agent should execute the action that seems to lead relatively high reward, by selecting
one element from the recall table of which the following measure is maximum.

min(Wi, Ui) (5)

where Ui is the utility associated with the memory element pointed by the ith recall table
element.

If the agent cannot find any element of enough value of the above measure, it takes random
or intrinsic behavior. Of course, it should sometimes do a type of exploration behavior ignoring
the above decision process. We call the probability of ignorance the exploration rate here.

2.4 Learning

The agent simply memorizes the experience as described above. To learn from delayed reward,
the utility value associated with each memory element is modified by the following equation
in every step.

∆Uj = rt · γj−t (6)

where Uj is the utility value of the memory element memorized at time j, rt is the current
reward, t is the current time, and γ is a constant of (0, 1) that is called discount rate. This
operation is done by following the backward links in the episode when the agent acquires
non-zero reward.

After doing an action expecting some amount of reward, the reliability of memory element
that the agent referred for decision should be modified according to the difference between real
and expected reward values. We implement this principle by the following equation.

∆Ri =

{
ρ · rt · (1− Ri) rt > 0
ρ · rt · Ri rt < 0

(7)

3



Goal

Obstacle

Agent

90

60

10

6

10

10

10

1010 10

20

20

4

5

20 30

30

25

10

Start
position

Figure 1: Field of example task.

where Ri is reliability of memory element and ρ is a constant of (0, 1) named reliability mod-
ification rate. This operation is also done by following the backward links starting from the
memory element emploied to decide the last action.

3 Experiments

We examined the effects of introducing an intrinsic behavior through two types of tasks of
mobile robot navigation in a continuous field rather than a grid world, because it is not easy
to be accomplished only by an intrinsic reactive behavior programmed by human hands. We
call the robot agent here.

Both types of example tasks use a same environment but in the first one we assume a robot
with two wheels independently controlled, and in the second one we assume a robot floating
on a slippery floor accelerated by jet.

3.1 Environment

The field where the agent moves around is a room surrounded by walls and includes some
rectangular obstacles as shown in Figure 1, a continuous version of the testbed by Sutton[4].
The task of agent is to move from the start position to the goal position as fast as possible.
It has neither a map of the room nor a detector of the global position, but only local distance
sensors. The agent has to cope with a problem of perceptual aliasing, because the range of the
sensors are not wide enough to distinguish the position in the room.

The start position is at 5 units from left edge and 25 units from upper edge of the field,
and direction of the agent at the start point is right. We introduce ±3 units and ±15◦ as a
fluctuation of start positioning to make it more realistic.

The goal area is a squire of 10 units at the upper right corner of the field. The agent
acquires a reward valued 1 when its center point reaches into this area.

4



3.2 Sensing

The agent has a number of distance detectors each of which measures the distance from the
surface of agent’s body to a wall and an obstacle. The range of sensing is 14 and the distance
is encoded into an integer from 0 to 255, where it is 0 when nothing detected and 255 if it
touches something. To make it more realistic, the encoded value includes a noise of pseudo
Gaussian distribution1 where the standard deviation is 5% of the maximum value, that is,
255× 0.05 = 12.75.

Two wheels robot has seven sensors evenly arranged in 180◦ of its front, that is, the angle
between each neighboring sensors is 180◦/(7− 1) = 30◦.

Floating robot has eight sensors around it, that is, the angle between each neighboring
sensors is 360◦/8 = 45◦. In addition to these distance sensors, it can also detect the velocity of
both horizontal and vertical directions. We use equation (3) to calculate the similarity using
0.7 and 0.3 for the weights of distance sensors and velocity respectively, because they have
different modality. This proportion was set through some preliminary trials.

3.3 Action

Actions of two types are quite different as follows.

Two wheels robot moves forward by 2 units or turns by 1 radian maximum in each step.
The demand of action is indexed by a real number of (−1, 1) where −1 means turning left,
0 means going straight ahead, and 1 means turning right. Intermediate values indicate the
proportion between turn and move. For example, −0.4 means to turn left by 0.4 radian then
to move straight by 1.2 units. If the agent cannot move any more because of collision with an
object, the rest portion of move is transferred into the angle of turn. Similarly to the sensing,
the action also includes some amount of fluctuation by maximum 5% discount from demanded
value in both turning angle and moving length.

Floating robot moves constantly by its own velocity until it bumps against a wall or an
obstacle. The demand of action is the amount of acceleration for both horizontal and vertical
direction represented by a pair of real numbers of (−1, 1). The initial velocity is zero. We
set the maximum value of acceleration as 0.2 units per square step. For example, the action
demand (−0.2, 0.3) means that the horizontal factor of velocity decreases by 0.2 and the vertical
factor of velocity increases by 0.3 before the move in current step.

3.4 Intrinsic behavior

It is obviously better for the mobile robot to have ability to avoid any useless behavior for
seeking the optimal path. One of the useful strategy is to avoid collision against walls and
obstacles which is relatively easy to implement into a robot with distance sensors, that is, the
rule that move the agent apart from the obstacles.

1 A random number of pseudo Gaussian distribution is generated using Box-Müller transformation in our
simulation program. The value is x =

√−2 logu1 · sin 2πu2 where u1 and u2 are independent random numbers
of (0, 1] from uniform distribution.

5



Table 1: Settings of learning parameters

memory size (T )1024, (F )4096
recall table size Nr 7

α 0.5
exploration rate 0.05
discount rate γ 0.99

time discount rate 0.99
reliability modification rate ρ 0.5
(T ) : for two wheels robot. (F ) : for floating robot.

Two wheels robot can turn as its action. It is effective to have rules that if there is
something at the left side then turn right, and if at the right side then turn left. To make the
avoiding behavior smoother, we employ the following equation to decide the portion of turn.

a =

∑�n/2�
i=1 i · (si − sn+1−i)∑�n/2�

i=1 i
(8)

where a is the value of action demand described above, and si is the sensing value of ith
element. s1 is of the left most sensor and sn is of the right most sensor.

Floating robot can change its velocity for arbitrary orientation. It is effective to apply a
negative acceleration against an obstacle, but it should not be too sensitive because it might
stop at around the center of broad space. We employ the following equation to determine the
horizontal acceleration.

ah =




bh+θ
1−θ

if bh ≤ −θ
bh−θ
1−θ

if bh ≥ θ

not changed, otherwise

(9)

bh = 0.5(sl − sr) + 0.25(sul + sdl − sur − sdr) (10)

where ah is the value of horizontal acceleration, θ is a threshold value determining the sen-
sitivity, and s. is the sensing value scaled into [0, 1]. The suffix letters l, r, u, d of s indicates
the direction of the sensor; left, right, upper, and lower respectively. The value of vertical
acceleration is determined by the symmetrical equation with the above one. Here we assign
0.25 as the value of θ.

This kind of reactive strategy might prevent from trying useful behavior. We should intro-
duce some probability of random action to avoid this drawback. Here we set the probability
to be 20% in both types of experiments.

The demand value of random action is produced using pseudo Gaussian distribution of
which mean value is 0 and standard deviation is 0.5.

3.5 Learning parameters

We use settings for learning parameters as shown in Table 1. These values were tuned by hand
through several times of preliminary experiments.

6



1st trial 1162 steps

579 steps

104 steps

1872 steps

2373 steps

2321 steps

2074 steps

930 steps

361 steps

2nd trial

4th trial

1st trial

2nd trial

4th trial

6th trial

8th trial

10th trial

with avoidance behavior without avoidance behavior

Figure 2: Typical examples of traces in successful cases of two wheels robot.

3.6 Results

To clarify the effects of intrinsic behavior, we tried 50 separated random number sequences
for two cases, the case without avoidance behavior but only random walk, and the case with
avoidance behavior.

Two wheels robot could achieve the goal without learning in 6,087 steps in average and the
standard deviation was ±5,789 over 49 cases2 without avoidance behavior, and they were 956
in average and ±954 in standard deviation over 50 cases with avoidance behavior. This means
that the intrinsic avoidance behavior was quite effective to inhibit a type of useless actions.

The average number of steps per trial within 30,000 steps of learning can be referred as an
evidence for learning performance. It was 3,844 (±3,336) without avoidance behavior, and was
283 (±98) with avoidance behavior. It could shrink the steps from the start position to the
goal into 63% in the case without avoidance behavior, and into 30% in the case with avoidance
behavior. This means that the learning was effective in both cases. It seems more effective
with avoidance behavior if compared under same number of total execution steps, but this is
obvious and unfair because learning works better with more times of trials.

2 In one of 50 cases, it could not reach at the goal within 30,000 steps.

7



Figure 2 shows typical traces of trials in relatively successful cases. Figure 3 shows the
cumulative reward of 50 cases. The number of cumulative reward at 30,000th step is less than
30 in 43 cases out of 50 cases without avoidance, though the number is 49 in the worst case
with avoidance behavior.

Floating robot could achieve the goal without learning in 11,129 steps in average and the
standard deviation was ±9,909 over 50 cases without avoidance behavior, and they were 5,433
in average and ±3,977 in standard deviation with avoidance behavior. This means that the
intrinsic avoidance behavior was effective also in this task.

The average number of steps per trial within 100,000 steps of learning was 8,426 (±2,630)
without avoidance behavior, and was 1,869 (±699) with avoidance behavior. It could shrink
the steps from the start position to the goal into 76% in the case without avoidance behavior,
and into 34% in the case with avoidance behavior. The learning was also effective in both
cases. Figure 5 shows the cumulative reward of 50 cases.

It was also revealed that the optimal path could not be found in any of the above tasks and
settings. EBRL potentially has ability to find the optimal path even if the problem includes
perceptual aliasing, though not proven mathematically yet. However, the path that was found
in our experimental simulation includes plenty of redundant behavior, which would be useful
to find some landmark to change its action.

4 Conclusion

We examined an improvement of learning performance for a reinforcement learning by intro-
ducing a reaction for collision avoidance as an intrinsic behavior. Through our experments
by the computer simulation, it was certified that this method can be effective for somewhat
difficult task, such as path finding by a mobile robot with local sensors.

It was easy to introduce this type of strategy into EBRL, however we need to develop addi-
tional mechanism to measure the confidence of decision making for other types of RL algorithms
such as look-up table, artificial neural network, classifier system, and so on. The variance of
probabilities in the stochastic action selector might be useful to measure the confidence, if it
uses this type of mechanism just like as roulette wheel action selection in Q-learning[5].

We applied the proposed method to two types of tasks, but both are still experimental
example problems. Application to more practical task is also our future work. The proposed
method could provide more effective profit for more complicated task on which human knows
what types of actions are useless.

The optimization of the intrinsic strategy will be a target of an evolutionary approach,
because natural animals also have acquired them through some billion years of evolutionary
processes. In the combination method proposed here, the intrinsic knowledge is separated from
the learning module, because we focused on a hand-coded knowledge from a standing point of
engineering. The initial values of learning variables should also be set up appropriately as the
intrinsic characteristics. These issues might be interesting from a view point of Artificial Life.

References

[1] S. Ono, Y. Inagaki, H. Aisu, H. Sugie, and T. Unemi. Fast and Feasible Reinforcement
Learning Algorithm. Proceedings of the International Joint Conference of the Fourth In-
ternational Conference on Fuzzy Systems and the Second International Fuzzy Engineering
Symposium, 1713–1718, 1995.

8



0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

cu
m

ul
at

iv
e 

su
cc

es
se

s

steps

without avoidance behavior.

0

20

40

60

80

100

120

140

160

180

200

0 5000 10000 15000 20000 25000 30000

cu
m

ul
at

iv
e 

su
cc

es
se

s

steps

with avoidance behavior

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

av
er

ag
e 

of
 c

um
ul

at
iv

e 
su

cc
es

se
s

steps

with avoidance behavior

without avoidance behavior

Comparison in average.

Figure 3: Learning performance over 50 separated random sequences of two wheels robot.

9



1st trial 2554 steps

884 steps

215 steps

12863 steps

4652 steps

5317 steps

4037 steps

3331 steps

2266 steps

2nd trial

4th trial

1st trial

2nd trial

4th trial

6th trial

8th trial

10th trial

with avoidance behavior without avoidance behavior

Figure 4: Typical examples of traces in successful cases of floating robot.

10



0

5

10

15

20

25

0 20000 40000 60000 80000 100000

cu
m

ul
at

iv
e 

su
cc

es
se

s

steps

without avoidance behavior.

0

20

40

60

80

100

120

140

0 20000 40000 60000 80000 100000

cu
m

ul
at

iv
e 

su
cc

es
se

s

steps

with avoidance behavior

0

5

10

15

20

25

30

35

40

45

0 20000 40000 60000 80000 100000

av
er

ag
e 

of
 c

um
ul

at
iv

e 
su

cc
es

se
s

steps

with avoidance behavior

without avoidance behavior

Comparison in average.

Figure 5: Learning performance over 50 separated random sequences of floating robot.

11



[2] T. Unemi and H. Saitoh. Episode-based Reinforcement Learning – an Instance-Based
Approach for Perceptual Aliasing. Proceedings of the 1999 IEEE International Conference
on Systems, Man and Cybernetics, V:435–440, 1999.

[3] D. W. Aha, D. Kibler, and M. K. Albert. Instance-Based Learning Algorithm. Machine
Learning, 6:37–66, 1991.

[4] R. S. Sutton. Integrated Architectures for Learning, Planning, and Reacting Based on Ap-
proximating Dynamic Programming. Proceedings of the Seventh International Conference
on Machine Learning, 216–224, 1990.

[5] C. J. C. H. Watkins and P Dayan. Q-Learning. Machine Learning, 8:279–292, 1992.

12


