
A Design of Multi-Field User Interface for Simulated Breeding

Tatsuo UNEMI

Dept. of Information Systems Science, Soka University

1-236 Tangi-cho, Hachiôji, Tokyo 192-8577 Japan

TEL: +81-426-91-9429, FAX: +81-426-91-9312, Email: unemi@iss.soka.ac.jp
URL: http://www.intlab.soka.ac.jp/˜unemi/

Abstract: This paper describes a design of graphical user interface for a simulated breeding tool with multi-
field. The term field is used here as a population of visualized individuals that are candidates of selection.
Multi-field interface enables the user to breed his/her favorite phenotypes by selection independently in each
field, and he/she can copy arbitrary individual into another field. As known on genetic algorithms, a small
population likely leads to premature convergence trapped by a local optimum, and migration among plural
populations is useful to escape from local optimum. The multi-field user interface provides easy implementation
of migration and wider diversity. We show the usefulness of multi-field user interface through an example of a
breeding system of 2D CG images.
Keywords: simulated breeding, interactive evolutionary computing, graphical user interface, genetic art.

1 Introduction

The method interactive evolutionary computing that
let the user select his/her favorite individuals among
the population is going to be applied to many fields
as a useful method to optimization following subjec-
tive preference. The key points to make the applica-
tion successful are not only on design of gene coding
as construction of solution space, but also on design
of efficient and effective usr interface to decrease the
user’s workload.
In this paper, we propose a design of graphical

user interface using multi-field for simulated breed-
ing method. The term field is used here as a pop-
ulation of visualized individuals that are candidates
of selection. Multi-field interface enables the user to
breed his/her favorite phenotypes by selection inde-
pendently in each field, and he/she can copy arbitrary
individual into another field. As known on genetic
algorithms, a small population likely leads to prema-
ture convergence trapped by a local optimum, and
migration among plural populations is useful to es-
cape from local optimum. The multi-field user inter-
face provides easy implementation of migration and
wider diversity.
In the following sections, we consider some as-

pects of evolutionary process on optimization and di-
versity, propose a design of multi-field GUI, and de-
scribe some remarks through a breeding tool of two
dimensional computer graphics (2D CG) image as an

example system.

2 Optimization and diversity

Billions years of evolution has produced very wide va-
riety of sophisticated natural organisms as we know
as in intelligent information processing by brain, self-
repairment of born and skin, physiological chemical
processing of metabolism, and so on. We can see
this process as optimization of self-reproductivity in
terms of efficiency and robustness against environ-
mental changes. It is a reasonable idea to introduce
the similar process of evolution into engineering as
a optimization method. Techniques called evolution-
ary computation can provide powerful tools to find a
feasibly optimal solution for some complex structures
though they may waste huge amount of computation
resources.
We likely suffer a complicated multi-modal land-

scape in a structural optimization problem because
the search space constructed by solution candidates
is usually high dimensional. It is necessary to exam-
ine as many candidates as possible to find the best
solution because each candidate has a lot of neigh-
bors in a high dimensional space. One of the key
techniques for successful search is a method to keep
diversity of individuals in population. Island model
[3] is one of the methods to keep diversity similar
to the others such as large size of population, local

1



Figure 1: The field window and the file menu. Gene
population of each field can be saved into a file.
“New” button spawns a new field window that con-
tains a population with randomly generated genes.

selection [1], minimal generation gap [2], and so on.
After geographical separation of a continent into

islands, a population of a specie that lived in a con-
tinent is divided into sub-populations in each island,
and they reach usually distinct organisms through in-
dependent evolutionary process since mating between
different islands is prohibited and there are many sub-
optimal points for the structure of an organism. As
the scheme theory [4] in the genetic algorithm indi-
cates, a crossover operation, a combination of parts of
different genomes, has a possibility to spawn a better
individual by combination of good genes from differ-
ent individuals. We can expect to get better solutions
by migration of individuals among different islands
after reaching some convergence in each island.
It is impossible to take a large size of population

in the framework of interactive evolutionary comput-
ing because the user has to observe as all of pheno-
types in the population as possible to evaluate them
instead of predefined fitness function in the ordinary
framework of evolutionary computation. Small size
of population often leads the evolutionary process to
undesirable direction such as unstability with genetic
drift and premature convergence into a local opti-
mum. It is necessary to introduce some method to
keep diversity even with a small population. The
multi-field user interface proposed below is a method
to bring a similar effect with island model into a tool
of interactive evolutionary computing.

3 Design of multi-field user in-

terface

We propose a multi-field user interface that enables
to keep a wide diversity of gene with a small popula-
tion in a similar manner with the island model. We
use a breeding tool of 2D CG images named sbart2.2b
[5] developed by the author as an example. This
tool’s basic concept came from combination of Ge-
netic Programming [6] and Simulated Breeding [7],
originally proposed by Karl Sims as Artificial Evolu-
tion [8].

3.1 Field window

Visualized individual phenotypes of a population are
displayed together in a field window as shown in Fig-
ure 1. We assume that it is possible to visualize each
phenotype with not so height computational cost,
and that the population size is about from sixteen
to thirty. A field window is divided into from 4×4 to
5×6 grids, showing each individual in each rectangle
of grid. It should be possible to produce an arbitrary
number of field windows by user’s command. Ge-
netic operations without migration are performed in
each field. Following the simulated breeding method,
the user explicitly selects one or more individuals in
the field as parents of the next generation. When
only one individual is selected then “Next” button is
pushed, all of individuals except selected one are re-
placed by mutants of selected individual. When more
than one individuals are selected, all of individuals
are replaced by children of selected parents produced
with crossover operation.
Figure 1 shows a field window and the file menu

of sbart. If the user selects “New” button, a new field
window appears on the screen initialized with ran-
domly generated genes. A population of genotypes
in the field can be saved into a disk file. “Open”
button opens an existing file of which name the user
selects, and loads its contents as a new population in
a new field window. The file menu includes “Save”
button that saves a current population, “Reset” but-
ton that resets a population with random genes, and
so on.

3.2 Migration among fields

Sbart has two types of methods to migrate an individ-
ual between fields. The first is to move it by copy and
paste using the edit menu shown in Figure 2 or using
short cut key corresponding to each edit operation.
The operation includes four steps, selecting the indi-

2



Figure 2: Field window and the edit menu. Genome
of each individual can be copied between a common
copy buffer and any field grid.

Figure 3: Migration of individual by drag and drop.

vidual that the user wish to move on the field first,
copying it into the copy buffer, selecting the individ-
ual that should be discarded by overwriting, and then
pasting it. Selection of an individual on the field is
done by pointing it and clicking the left mouse but-
ton. A red border frame of a rectangle area indicates
the individual is selected. It takes six steps if the user
uses the edit menu to both copy and paste because
of invoking the edit menu from the menu bar. Short
cut keys can reduce it by two steps.
The other is by drag and drop. As Figure 3 shows,

the user can copy any individual by pointing it with
the mouse cursor, pressing the left button, moving
the mouse pointer keeping the mouse button pressed,
and releasing the button at the destination rectangle.
A small window showing the individual image moves
following the mouse’s move. This method need less
number of operation than the first one. It is easier
for the user who well know another application with
similar operation such as a file manager.

Figure 4: Individual menu is invoked when the user
moves the mouse pointer to the displayed individual
in a field window and pushes the right button. Op-
erations for pointed individual can be done.

3.3 Protection of individual

Not only to save genes in a disk file, the user some-
times wish to keep some interesting individuals with-
out modification temporally. It is realised by pro-
tection of individual in sbart. The user can protect
his/her selected individual by pushing “Protect” but-
ton in the edit menu as shown in Figure 2. Or, he/she
also can do it from the individual menu invoked by
clicking the right mouse button on the displayed in-
dividual. The latter method is better in terms of the
number of basic operations. This individual menu
also includes “Copy,” “Paste,” and other operations
for indexed one individual.
The alternative design of individual protection is

to facilitate the other type of window that keeps the
arbitrary number of genome as a profile. This method
may lead to a filing system including library files,
however we have not tried to implement it yet. Some
method for efficient retrieval for desired genome from
large scale data base will be needed for this type of
filing system.

4 Effects of multi-filed interface

Populations processed through independent evolution
usually reach unique features for each. Fluctuation of
subjective evaluation criteria and multi-objectiveness
provide source of a wide variety of niches for individu-
als. Additionally, variable length of chromosome such
as in Genetic Programming provides wider diversity
because of complexity of the search space.
Figure 5 shows offsprings produced by crossover

between individuals that came from different fields.

3



×

↓

Figure 5: An example of offsprings spawned by mi-
gration and crossover between two individuals bred
independently in the different fields.

Some part of features of both parents inherit to the
children, but it is unknown which feature remains be-
cause the crossover points are decided randomly. If
the gene coding allows redundant representation or
non-effective part, it may produce children of more
unexpected features. The concrete information (func-
tion) of the genome of parents and children in Figure
5 is shown in Appendix.

5 Conclusion

Introducing multi-field user interface proposed here
makes it possible to keep wide diversity of individu-
als by a small population in an application of inter-
active evolutionary computing. We described design
and effects of this method using sbart2.2b as a typical
example. It can be applied to another types of do-
mains and frameworks other than simulated breeding.
Sbart2.2b includes also genome editor that manipu-
late gene directly, just like a genetic operation by a
biologist, and domain-dependent operations, such as
exchange between X and Y coordinates for 2D CG.
These additional functions help to provide more pow-
erful effects for wider diversity through combination
with the multi-field interface.

Our future work should include some cognitive
evaluation of the user interface through a protocol
analysis and statistical analysis of the effects for keep-
ing wide diversity. Some researchers in the field of
evolutionary computation recently have interests in
theoretical and experimental analysis on landscape
and evolutionary process of variable length of chro-
mosome [9]. We may be able to expect some fruitful
hints from their results in near future.
The information related to sbart is available from

the following URL including the source and binary
codes.
http://www.intlab.soka.ac.jp/~unemi/sbart/

Acknowledgment

The tool for breeding 2D CG images named sbart was
developed by the author inspired by the idea of Ar-
tificial Evolution by Karl Sims [8]. The Sims’ system
works on a CM-2 massively parallel machine with six-
teen SGI graphics workstations. Sbart is one of the
descendants that works on a Unix workstation with
X Window system with original extension including
multi-field user interface described here. Since start-
ing distribution of that program on the Internet in
1993, a lot of persons have given us advices and en-
couragement. We would like to thank all of them,
especially Mr. Karl Sims for his kind permission for
distribution of the program code.

References

[1] Sarma, J. and De Jong, K. : An Analysis
of Local Selection Algorithms in a Spatially
Structured Evolutionary Algorithm. in Proc. of
the Seventh ICGA, 181–187, Morgan Kaufmann
(1997).

[2] Satoh, H., Ono, I., and Kobayashi, S. : A New
Generation Alternation Model of Genetic Algo-
rithms and Its Assessment, Journal of Japanese
Society of Artificial Intelligence, Vol. 12, No. 5,
734–744 (1997 in Japanese).

[3] Pettey, C. B., Leuze, M. R., and Grefenstette,
J. J. : A Parallel Genetic Algorithm, in Proc. of
the Second ICGA, 155–161, LEA (1987).

[4] Goldberg, D. E.: Genetic algorithms in search,
optimization and machine learning, Addison-
Wesley (1989).

[5] Unemi, T. : The World of Arts that Artificial
Life Creates, in T. Shibata and T. Fukuda (eds),

4



Near Future of Artificial Life, Jiji-tsuushin-sha,
69-86, (1994 in Japanese)

[6] Koza, J. R. : Genetic Programming: on The
Programming of Computers by Means of Natural
Selection, MIT Press (1992).

[7] Dawkins, R.: The Blind Watchmaker, Longman,
Essex (1986).

[8] Sims, K.: Artificial Evolution for Computer
Graphics, Computer Graphics, Vol. 25, No. 4
(1991).

[9] Iba, H.: Recent Research on Evolutionary Com-
putation, Journal of Information Processing So-
ciety of Japan, Vol. 39, No. 1, pp. 32–36 (1998
in Japanese)

5



Appendix: Genomes of individuals in Figure 5

Parents at left side

pow(hypot(max(YX0,0XY),sin(hypot(0YX,0XY))),hypot(max(sin(hypot(0YX,0YX)),0XY),YX0))/--0.289

Parents at right side

sqrt(cos(sqrt(XY0))/(sin(hypot(YX0/X0Y,0YX)--0.805)--0.383-mix(-1.125,1.453)))

Children

(upper one of first row → lower one of first row → second row → . . . → lower one of fifth row)

1,1:pow(hypot(max(YX0,0XY),sin(hypot(0YX,0XY))),sin(hypot(YX0/X0Y,0YX)-0.805)--0.383)/-0.289

2,1:sqrt(cos(sqrt(XY0))/(sin(hypot(YX0/X0Y,0YX)-0.805)--0.383-sin(hypot(0YX,0YX))))

3,1:pow(sqrt(XY0),hypot(max(sin(hypot(0YX,0YX)),0XY),YX0))/-0.289

4,1:sqrt(cos(sqrt(XY0))/(sin(hypot(YX0/X0Y,0YX)-0.805)--0.383-0YX))

1,2:pow(hypot(max(YX0,0XY),sin(hypot(0YX,0XY))),hypot(max(sin(hypot(0YX,0YX)),0XY),YX0))/(YX

0/X0Y)

2,2:sqrt(YX0/(sin(hypot(YX0/X0Y,0YX)-0.805)--0.383-mix(-1.125,1.453)))

3,2:pow(hypot(max(YX0,sin(hypot(YX0/X0Y,0YX)-0.805)--0.383-mix(-1.125,1.453)),sin(hypot(0YX,

0XY))),hypot(max(sin(hypot(0YX,0YX)),0XY),YX0))/-0.289

4,2:sqrt(cos(sqrt(XY0))/(YX0-mix(-1.125,1.453)))

1,3:pow(hypot(max(YX0,0XY),sin(hypot(YX0/X0Y,0YX)-0.805)),hypot(max(sin(hypot(0YX,0YX)),0XY)

,YX0))/-0.289

2,3:sqrt(cos(sqrt(XY0))/(sin(hypot(YX0/X0Y,0YX)-pow(hypot(max(YX0,0XY),sin(hypot(0YX,0XY))),

hypot(max(sin(hypot(0YX,0YX)),0XY),YX0)))--0.383-mix(-1.125,1.453)))

3,3:pow(hypot(max(YX0,0XY),sin(hypot(0YX,0XY))),hypot(max(sin(hypot(0YX,0YX)),0XY),sin(hypot

(YX0/X0Y,0YX)-0.805)--0.383-mix(-1.125,1.453)))/-0.289

4,3:sqrt(cos(sqrt(YX0))/(sin(hypot(YX0/X0Y,0YX)-0.805)--0.383-mix(-1.125,1.453)))

1,4:pow(hypot(max(YX0,0XY),sin(hypot(0YX,0XY))),hypot(max(sin(hypot(0YX,sin(hypot(YX0/X0Y,0Y

X)-0.805)--0.383)),0XY),YX0))/-0.289

2,4:sqrt(cos(sqrt(XY0))/(sin(hypot(YX0/X0Y,0YX)-0.805)--0.383-mix(max(sin(hypot(0YX,0YX)),0X

Y),1.453)))

3,4:pow(hypot(max(YX0,sin(hypot(YX0/X0Y,0YX)-0.805)--0.383),sin(hypot(0YX,0XY))),hypot(max(s

in(hypot(0YX,0YX)),0XY),YX0))/-0.289

4,4:sqrt(cos(sqrt(XY0))/(sin(hypot(YX0/X0Y,0YX)-0.805)-YX0-mix(-1.125,1.453)))

1,5:pow(hypot(max(YX0,0XY),sin(hypot(0YX,sin(hypot(YX0/X0Y,0YX)-0.805)--0.383-mix(-1.125,1.4

53)))),hypot(max(sin(hypot(0YX,0YX)),0XY),YX0))/-0.289

2,5:sqrt(cos(sqrt(hypot(max(YX0,0XY),sin(hypot(0YX,0XY)))))/(sin(hypot(YX0/X0Y,0YX)-0.805)--

0.383-mix(-1.125,1.453)))

3,5:pow(hypot(max(YX0,0XY),sin(hypot(0YX,0XY))),hypot(max(sin(hypot(0YX,0YX)),0XY),YX0/X0Y))

/-0.289

4,5:sqrt(cos(sqrt(XY0))/(sin(hypot(YX0/X0Y,0YX)-0.805)--0.383-mix(-1.125,max(YX0,0XY))))

6


