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ABSTRACT

This paper proposes a reinforcement learning method
based on memorizing and retrieving episodes of the
learner’s own experiences. The results of the computer
simulation on a simple but typical non-Markovian en-
vironment is shown to clarify the performance. An
instance-based reinforcement learning method previ-
ously proposed by an author is also based on the
learner’s experiences memorized without any modifi-
cation. But it is applicable only to Markovian domain
where it is enough for the learner to acquire a reactive
policy to achieve the optimal behavior. An episode-
based method is not only overcome a perceptual alias-
ing but also inherit the advantages of instance-based
method on flexibility for applicable domain.

1 INTRODUCTION

A reinforcement learning method presented here is the
one the author have proposed ten years ago, but it has
not revealed in publishing in the international domain.
This paper describes its mechanism and a recent ex-
perimental results on the computer simulation.

Following the classification of learning strategies
by Carbonell[1], the basic approach is a framework of
rote learning of which origin can be found in Samuel’s
Checker Player[2]. Memory-based reasoning proposed
by Stanfill and Waltz[3] and many other approaches
named instance-based [4, 5] and exemplar-based learn-
ing[6] and nearest neighbor classification[7] can be seen
as its successors.

The author has presented a simpler version of re-
inforcement learning method based on a rote learn-
ing scheme as an instance-based reinforcement learning
method [8]. In all of these methods, the learner’s experi-
ences are memorized without any modification and are
referred for decision making, in contrast with the other
learning paradigm such as inductive learning, chunk-
ing and explanation based learning. A difference with
neural networks is that they rely on the modification of
memory structure and the retrieval by similarity rather
than adjustment of connection weights. We refer the
approach described here by Episode-Based Reinforce-
ment Learning method (EBRL) because the memory is

1 The second author is currently working at Nippon Telecom-
munications System Co.

organized in a form of a set which includes time se-
quences of experiences.

How input/output data are structured is one of the
important features to characterize any learning mecha-
nisms as similarly as strategies. Discrete time sequence
of relatively small grain size is the data structure men-
tioned here, which comes from situation of living or-
ganisms in the real world. The input is an unlimited
sequence of vector sampled in a short time interval,
and the output is a similar sequence of signals. One of
the distinct characteristics of this setting is that there
is no obvious boundaries to extract any data unit from
input sequence. The learner must mention some clus-
ter of input data as a unit, because data given at one
primitive step are too simple to give them any mean-
ings without any relation between others, and there
is no explicit information provided from the environ-
ment to obtain what range of data should be treated
as one cluster. Clustering the raw data is one of the
unavoidable tasks of the learner.

In the rest part of the paper, we show an overview
of typical learning environment, describe some detail
of the learning mechanism, and present some experi-
mental results and discussion.

2 LEARNING ENVIRONMENT

We had examined the performance of EBRL by an ar-
tificial insect world ten years ago[9], but it is not a
suitable task to clarify the performance against non-
Markovian environment. So, we designed a new sim-
pler type of example task on a mobile robot navigation
as shown in Figure 1. The robot learns the naviga-
tion strategy to move from the start position to goal
area. The action set includes three candidates, turn
−90◦, 0◦, and 90◦ than go ahead by a constant dis-
tance. The sixteen sensors detect the distances from
the robot surface to any obstacle by a precession of
six bits integer, that is 0–63. The learner gets reward
rt = 1 when it reaches at the goal area, is punished
rt = −1 when it collides against the wall, and has noth-
ing rt = 0 otherwise. After the robot reached at the
goal area, it is forced to be back to the start position
to try moving toward the goal again. The performance
can be measured by the average value of rewards par
trial steps. In addition to this sort of typical setting
for learning from delayed reward, the learner’s sensory
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Figure 1: Environment of experimental task on a robot
navigation.

data are only the local information that cannot give
one to one mapping to the absolute position so that the
environment includes the problem on perceptual alias-
ing. Two crossings of the corridors ensure this feature
because only from the current sensory data the robot
cannot distinguish which crossings it locates at. It has
to use some information of the context, the history of
its moves, to detect the correct position.

3 LEARNING MECHANISM

The learner adjusts the weights of memory elements ac-
cording to some sorts of heuristics to acquire a plausi-
ble strategy through its own experience, and improves
its performance in terms of getting ability to make a
suitable decision in each situation. The details of this
mechanism are shown below.

3.1 Structure of Memory Organization

The memory is organized in a manner of a collec-
tion of sequences each of which includes two types of
nodes named Sensory Memory Elements (SMEs) and
Action Memory Elements (AMEs), and directed links
between them. Each SME consists of three compo-
nents, sensory data, weight, and expected preference
value. Each AME has two components, action data
and weight. Each sequence is arranged in the order
of time when the data were input or output, such as
S1 → A1 → S2 → A2 → · · · → Sn → An where Si

is the SME acquired at time i and Ai is the AME ex-
ecuted at time i. In addition to this structure, the
mechanism employs a set of constant number of point-
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Figure 2: Schematic illustration of the memory orga-
nization.

ers to memory elements with weight values. This set is
named Recall Table. Each weight of Recall Table Ele-
ments (RTEs) indicates the similarity between pointed
memory data and the current situation. It can be said
that the recall table shows the learner’s view of current
situation in each step. One of the RTEs may be the
plan, of which action data is a candidate of next ac-
tion. There may or may not be a plan. Figure 2 shows
a schematic illustration of the organization of memory.
The method to manage recall table and the plan will
be described later.

3.2 Memorizing and Forgetting

In each step, input and output data tend to be memo-
rized with a constant weight 0.5, and to be connected
with the memory element of the last step. To avoid
the explosion of memory space, the number of SMEs
and AMEs are restricted to a constant, so some data
in memory elements must be forgotten to replace them
with new data. The candidate for replacement is cho-
sen according to the value of weight, that is, the el-
ement with the lowest weight tends to be forgotten.
Weights of all of memory elements are diminished in
each step by multiplying a constant η of (0, 1). This
mechanism follows the heuristic:
Heuristic 1 Recent data are more reliable than old
data.

Another type of weight adjustment is also done in
the phase of reflection. Since the objects for modifi-
cation of weights, except diminishing, is restricted to
few memory elements at one step, it is possible to em-
ploy an efficient algorithm to find the element of the
lowest weight, using a balanced binary tree where each
mother node has lower weight than its daughters so
as to keep the lowest weight always at the top node.
It takes O(logN) in time complexity to insert, modify
and remove one memory element, where N is the num-
ber of elements in the memory, but O(1) to retrieve the
lowest one. The memory is organized in a single chain
until the number of processing steps reaches the num-
ber of maximum memory size, but after that step it
becomes a collection of a number of chains since for-



getting cuts a chain. Useless nodes, such as a single
node with no connection and an AME not followed by
any SME, are also forgotten.

3.3 Recalling Similar Experience

One of the key techniques supporting this mechanism is
to catch the current situation by recalling similar data
from memory. Moore[10] proposed a learning mecha-
nism closely related this approach except that it does
not support context sensitive features of environment,
where the type of object data is quite same. He pointed
out that an efficient algorithm to retrieve similar data
have developed in the field of computational geometry,
where the similarity between two objects is defined us-
ing Euclidean distance. The distance actually used in
this mechanism is defined as follows.

D(x, y) =

√√√√ n∑
i=1

(xi − yi)2

VXi

(1)

where x and y are vectors of which elements is de-
noted by xi and yi, and VXi is variance of ith element
over the data already memorized. The variances can
be calculated as the difference between expected value
of square and square of expected value, so it is easy to
get its value at each step by keeping the sum of data
and sum of square of data which are modified in mem-
orizing and forgetting process. The similarity measure
used in this mechanism is defined as follows.

S(x, y) =
ED −D(x, y)√

VD

(2)

where ED is the expected value of distance and VD is
the variance. The reason why this style of normaliza-
tion was employed is that the value of similarity is used
in combination with preference value in the process of
decision making described later. It is somewhat diffi-
cult to get the exact value of ED and VD efficiently in
each step, but Fujino[11] suggested a feasible method
to estimate these values under the assumption that dis-
tribution of each element of object vector is formed in
same figure, the number of data is large enough and
the number of dimensions is more than four or five.
The value of ED can be estimated by the following ex-
pression.

ED√
2n

≈ 1− 1 + µ4

16n
− 127− 42µ4 + 15µ2

4 − 8µ6

512n2

− 210− 540µ4 + 145µ2
4 + 100µ6 + 5µ8

1024n3
(3)

where n is the number of elements of one object vector
and µk is moment of order k of normalized data, which
is defined by

µk =
1
N

N∑
i=1

(
xi − EX√

VX

)k

(4)

where N is the number of memory elements. The ex-
pected value of square of distance is

ED2 =
2

N(N − 1)
N∑

i=2

i−1∑
j=1

n∑
k=1

(xik − xjk)2

Vk

=
2Nn

N − 1 ≈ 2n when N → ∞ (5)

where xik is the ith element in kth object in memory.
The value of VD can be calculated as

VD = ED2 − E2
D ≈ 2n − E2

D (6)

The initial value of RTE’s weight is S(x, m) where
x is the currently input data and m is the data re-
called. To catch a context of current situation, data
involved in any RTE are replaced to new one which is
connected with old one by a link, in each step. At the
same time, RTE’s weight is modified by combining old
weight and similarity between new data and the data
newly coming from environment. The combination is
the following weighted summation.

W i
t = α · W i

t−1 + (1− α) · S(xt, M
i
t ) (7)

where W i
t is the weight of ith RTE at time t, xt is the

input data at time t, and M i
t is the input data pointed

by ith RTE associated from M i
t−1 following two links.

α is a constant of (0, 1) which indicates how many
steps the learner considers as a context. The smaller α
becomes the longer interval of context considered. No
consideration would be given to the context if the value
was one. The newly retrieved data with relatively high
similarity participate the competition with old ones in
each step, and RTEs of height weight survive in recall
table.

3.4 Prediction and Reflection

To decide the next action, the insect must make a pre-
diction to see what will be happened in near future
in terms of causal relation between alternative actions
and preference values. The prediction will be estab-
lished by looking data ahead through link by link, un-
der support of the following heuristic rule.
Heuristic 2 Similar situation likely follows similar
situation.
Instead of inefficient association of nodes through
many links in each step, actually it assigns the ex-
pected preference values for each SME in order to get
a feel about aspects in future by referring them. This
assignment is done when the learner encounters reward
or punishment, by propagating the reward value back-
ward through links from the last node diminishing the
value gradually, until its value becomes less than the
threshold or it reaches the node already assigned the
expected preference value. This propagation stands on
the following heuristic rule.



Heuristic 3 The more the event is closely followed by
a good event, the more it seems good but less good than
that.
New expected preference value (EPV) of SME formally
represented by

Eτ = βt−τ (8)

where Eτ is the EPV of SME memorized at time τ , and
β is a constant of (0, 1). The learner should do some
sorts of modification of its knowledge when it encoun-
ters a valuable or detestable experience, as any induc-
tive leaner do for positive or negative examples. One
of the operations is assignment of expected preference
values described above. The others are for the plan
currently executed. The plan, if exists, recommends
the action to get a valuable object in near future. So,
if the learner gets some reward, more support should
be given to the plan, and if punishment then its reli-
ability should shrink, based on the following heuristic
rule.
Heuristic 4 The more the rule is frequently useful
and the less it leads failure, the more it seems reliable.
This principle is realized by modifying weight and pref-
erence values of SMEs tracing through some links back-
ward from SME on the current plan. When it encoun-
ters a punishment as a result of the plan of last step,
the EPVs of SMEs connected to the plan are revised
by the following equation.

Ei
t = Ei

t−1 − (1− γW p

1 ) · γs
2 · (Ei

t−1 + 1) (9)

where W p is the weight of RTE of the current plan,
is the number of steps to associate the current plan,
and γ1 and γ2 are constants of (0, 1). This equation
says that the more the SME is closely connected to the
current plan and the more the current plan is similar
to current situation, the more its expected preference
value is decreased. Simultaneously, weight of SME are
modified using the following equation.

wi
t =

{
wi

t−1 + ρ1 · ρs
2 · (1− wi

t−1) if rt = 1
wi

t−1 − (1− ρ1) · ρs
2 · wi

t−1 if rt = −1
(10)

where wi
t is the weight of ith SME at time t, and ρ1

and ρ2 are constants of (0, 1). The weight increases
if it gets reward, and decreases if punished, keeping
that value to be in the range from 0 to 1. Thus, more
reliable sequence gets more weight and less reliable one
loses some weight, so as to remain the useful sequences
in the memory. It seemed that the learner should do
something when it expected a food but actually got
nothing. But, currently it is not implemented yet.

3.5 Decision Making

The insect decides its own action step by step. That
decision depends on the plan if exists, otherwise on
the short term prediction of expected preference value.
If there is no evidence of some strength to choose a

single action, it randomly selects the next action from
a finite set of alternatives. The following heuristic is
important for this kind of learning by exploration.
Heuristic 5 It is better to do anything than nothing.

When it has a plan, which is one of RTEs as de-
scribed above, it selects the data in AME of that plan
as the next action, as it revises each of SMEs involved
in RTEs into next AMEs connected with them before
it makes a decision. Acceptance or rejection of the
plan is judged referring a measure computed from the
weight of RTE and the EPV of SME in RTE, which is
formally represented

mi = min(Wi, Ej) (11)

where i is the index of RTE and j is the index of SME
pointed by ith RTE. The reason why we take a min-
imum is that it seems natural to make a conjunction
of these two measures and a minimum corresponds to
conjunction in a similar sense of Fuzzy logic. That is,
it will be desirable to accept the RTE as a new plan
of which both of these values are large. The current
plan is rejected if its value of mi becomes less than the
threshold value θ, which indicates the learner’s satis-
faction. The value of θ increases in each step without
reward, and reset to the lowest value when it gets re-
ward. When mi is less than θ, it tries to employ an-
other RTE as a new plan by investigating values of mi

for all RTEs to choose the maximum value. Of course,
nothing is employed if that maximum value is less than
the threshold. In current implementation, the learner
tends to keep current plan so that some length of action
sequence can be executed continuously, instead to se-
lect the best plan from recall table in every steps. The
length of that sequence depends on some parameters
such as θ and α.

In the initial state, there is no plan. Whenever it
has no plan, it tends to see which RTE is best as a
new plan, as similarly as the case of rejection. In the
case that it even fails to select a new plan, it tries to
evaluate each of alternative actions by checking EPV of
next SME connected with AME in all of RTEs, based
on the following heuristic rule.
Heuristic 6 If you don’t have any good alternatives,
find less bad one.

It calculates the value of mi for all of RTEs using
EPV of the next step SME, makes the summations of
mi of same action for each of alternatives, and rec-
ommends an action with relatively height value as the
next one. If that value is less than θ then the recom-
mendation is rejected, that is, the learner will put its
next step toward a random direction.

4 EXPERIMENTS

We examined the proposed learning method described
in the previous section through computer simulation of
a type of robot navigation shown in section 2.



The environmental settings are as follows. The size
of the room where the robot moves around is 320 units
by 320 units square. The width of the corridors is 64
units. The size of the robot is 32 units in diameter.
The length of move in one step is 16 units. The range
of the distance sensors is within 64 units.

The learning parameters are set as follows. The di-
minishing factor η for aging is 0.98. The adjustment
factor α of the weight of RTE in equation (7) is 0.4.
The discount factor β of back-propagation of reinforce-
ment signal in equation (8) is 0.98. The discount factor
γ1 is 0.8 and γ2 for unreliable SME in equation (9) is
0.85. The adjustment factor ρ1 and ρ2 for the weight
of SME in equation (10) are 0.5 and 0.95 respectively.

We investigated the effects of the size of memory
and the size of recall table. Figure 3 shows the learn-
ing curves drawn through experiments on the computer
simulation. This learning mechanism works well even
if the recall table includes only three elements. In the
case where the size of recall table is 15, it performs bet-
ter in any size examined here than the case of smaller
size of recall table. Larger capacity of the memory
causes better performance but slow improvement in
early stage of learning.

The other experiments we did is on the adaptability
against a type of environmental change. We examined
to change the start position from A to B in Figure
4 after 30,000 steps of learning. As Figure 5 shows,
it is difficult to adapt to the new situation when the
memory size is large. The reason could be that the
effects of forgetting is works more effectively when the
memory size is small. It might be a dilemma between
performance and adaptability, namely exploitation vs.
exploration. We should introduce an additional func-
tion to reinforce forgetting when the learner detects
some degree of environmental change.

We also examined other reinforcement methods,
Window-Q and Recurrent-Q proposed by Lin[12] for
non-Markovian environment, to the same problem.
Both of them could perform better than a random be-
havior but worse than the proposed method. Unfortu-
nately they would not be the best performance because
they also have parameters to adjust to the problem do-
main.

5 DISCUSSION

We proposed a learning mechanism, which can be clas-
sified into non symbolic approach, but neither neural
networks nor connectionist’s model. In a sense of archi-
tecture, this is directed to numerical computation and
manipulating data structures on traditional Neumann
machine, rather than brain or symbolic computation.
From this point of view, our approach has a similar-
ity with genetic algorithm, adaptive automaton, and
so on, even though their basic strategies are quite dif-
ferent.

One of further extensions of this model is to in-
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Figure 3: Average performances over 30 trials of dis-
tinct random number sequences for a variety of the
memory size.
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Figure 4: Start position A and B for the experiments
on the adaptability against environmental change.
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troduce a mechanism to provide any sense of data ab-
straction. Claim from symbolism may be that it must
be much difficult for these kinds of approach to explain
human intelligence observed in many sorts of problem
solving. However, we believe that it may be an en-
trance to human intelligence to add data abstraction
mechanism to our framework. It may be possible to ap-
ply this mechanism to another practical domain such
as numerical prediction in financial activities. Our pri-
mary motivation is to search a model of intelligent or-
ganism, but any practical challenge is also our interest.
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