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Abstract
This paper describes an experimental result on evo-

lutionary processes of learning agents in a multi-agent
environment, under our objective to propose an ori-
entation toward a feasible design of a group of au-
tonomous mobile robots that can evolve in the software
level. After the work of � steps, each agent gathers
the degree of task achievement and the genetic infor-
mation from the nearest � �1 robots to revise its own
genome, here named Local Mating Strategy. It starts
learning again after this genetic operation. The ex-
periment of ash sweeping by fifty autonomous mobile
vacuum cleaners on the computer simulation is pre-
sented to show how this method is effective. It focuses
on the effects of mating group size � and life span
length �. According to the results, proposed method
works well even if � � 3.

1 Introduction

Evolutionary robotics is one of the challenging fields related
to Artificial Life, but only several practical results have been
reported, such as optimizing control strategy of autonomous
mobile robot by evolutionary adaptation of neural network
[Floreano 93, Harvey 96, Hoshino 94], by genetic program-
ming [Koza 92], and by classifier system [Dorigo 95]. As
[Nolfi 94] stated, there are several possible approaches, but
combination of simulation and real environments is one of the
feasible methods described in [Miglino 96] because it is diffi-
cult to execute a huge number of iteration of testing individual
performance using the real hardware robot, however there still
remain the issues for building an appropriately precise simu-
lation program including noise of sensor signal, fluctuation of
actuator’s motion, interaction between physical environment,
and so on.

The primary purpose of our research partially described
here is to propose an orientation toward a feasible design of
evolvable robot team. Here we focus on a design of life
cycle that can realize a type of evolution in a multi-agent
environment with relatively small number of generations and
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small amount of communication cost. This paper proposes
Local Mating Strategy to satisfy this requirement, and presents
some experimental results to show the effectiveness of the
method.

Learning is also a strategy to adapt to the environment for
autonomous agent. In a multi-agent situation, it also works
enough with communication among agents as described in
[Weiß 93, Tan 93, Unemi 93]. There are several researches
on relation between evolution and learning, such as Bald-
win effect [Baldwin 1896, French 94], optimizing learning
parameters by a genetic algorithm [Unemi 94], optimization
by combination of artificial neural network and genetic algo-
rithm [Belew 92], and so on. These papers has reported that
the combination tends to provide earlier achievement to the
superer performance. By this reason, we primarily examined
evolution of reinforcement learning robots.

The rest sections describe our proposed method, experimen-
tal task, and experimental results of our computer simulation.

2 Local Mating Strategy

Evolution is an adaptive process by a population of organisms,
which seems suitable for a framework to design an adaptive
multi-agent system if an agent can spawn its offspring. How-
ever, it is difficult for artificial robot system to reproduce its
physical body in the current technology. It seems feasible so
far to let it evolve not in the hardware level but in the software
level. One elegant idea to apply an evolutionary computation
to a real robot is proposed in [Floreano 93] though it is only
for a single agent. The following mechanism we propose here
is for multi-agent evolution.

Proposed method named Local Mating Strategy is to com-
municate with only a small number of nearest robots for
mating, to avoid global communication. Ordinary genetic
algorithm needs global communication to select superer in-
dividuals from whole of population as parents to reproduce
offsprings. This type of global comparison is useful to ob-
tain the optimal solution, but wastes a long time to gather
fitness values of all of robots, because it requires a many to
one communication process. In the proposed method, each
robot gathers the information on fitness and genetic code of
the nearest � � 1 others around it, and then embeds the ge-
netic information of superer one if exists. This is in a style of
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Figure 1: Local mating strategy, where each robot communi-
cates with the nearest few others.

communication by observation as Figure 1 illustrates.
Fitness is measured as the score of task achievement. Se-

lection is done among local sub-group. For each robot, the
following genetic operation is applied.

1. After � steps passed, that is, it reaches the end point of
life, it gathers information on fitness and genetic code of
the nearest � � 1 others around it to make the list of
information of � individuals including itself, and sorts
them by fitness.

2. It makes no change if it is in the upper third of � .

3. It embeds a part of genetic code of randomly selected
one from the upper third if it is in the middle third. This
operation corresponds to the crossover operation in genetic
algorithms.

4. It replaces its genetic code by a mutant of randomly se-
lected one from the upper third if it is in the lower third.
This operation corresponds to the mutation in genetic al-
gorithms.

After the above genetic operation, each robot resets the
intrinsic parameters according to the new genetic information,
then starts its work again. The reason why we denote the
number of steps between genetic operations by life span is
that this restart process is similar to the birth of baby in the
software level.

This paper focuses on the effect of the mating group size
and life span length. As described below, experiments by
computer simulation were done on a variety of mating group
size and life span length to investigate their effects.

There have been some researches on local mating strategies
for distributed (or parallel) genetic algorithms [Tanese 89,

Figure 2: Example view of sweeping ashes task.

Manderick 89, Schleuter 92, Belding 95] to speed up and to
avoid premature convergence on a massively parallel ma-
chine [Spiessens 91] and a distributed computer network
[Maruyama 93]. The experimental results presented in these
papers showed that local mating strategies are effectiveenough
compared with global mating of a canonical genetic algorithm.
We can expect the similar effects in our algorithm for an au-
tonomous mobile robot team.

3 Experimental task and robot

This section describes the specification of the experimental
task, physical features of robot assumed, learning mechanism
of robot, and some details related on genetics.

3.1 Task

The task we designed to examine the evolutionary process is
to sweep ashes on the floor by a group of autonomous mobile
vacuumcleaners. Each cleaner is an autonomous robot viewed
as an individual in the evolutionary process. Each robot cleans
up all amount of ashes just under its body in each time step,
but ashes spread and increase gradually. The working space
is a room of square shape surrounded by walls and there are
some other walls as obstacles. Figure 2 shows an example
display of the simulator.

The above settings are designed to satisfy the following
conditions.

1. The work is by a group but it doesn’t require sophisticated
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Figure 3: Vision (left side) and action (right side) of the robot.

cooperation among members.

2. Each member can measure the degree of individual task
achievement.

3. Information on behavior strategy of a robot is reusable for
another robot.

Total amount of ashes the robot absorbed in its life span is
used as the fitness value.

3.2 Robot

Each robot has seven distance sensors to detect any object at
its front in a limited area. The robot detects a wall and another
robot by sensors but it has no explicit signal to recognize which
type of object it is seeing. Each sensor outputs a real number
between 1.0 for the touched object and 0.0 for nothing in the
sensing area. The robot is also able to detect the amount of
ashes on the floor at just its front. The robot moves forward by
constant length and can turn by constant degree in each time
step. It stops but can turn when it collides against any object.
Figure 3 illustrates sensing and action of the robot.

The main strategy the robot should acquire to achieve the
task is collision avoidance, such as rules if you detected any
object in the left side then turn right and if you detected any
object in the right side then turn left. Some proportion of
random action possibility is also needed to avoid any deadlock
situation.

3.3 Learning

Each robot has a potential ability of reinforcement learning
based on simplified neural Q-learning as shown in Figure 4.

In each time step, the robot selects its action under the
following probability.

� ��� � exp
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where � indicates the type of action, turn left, go straight
or turn right, �� is the vector of connection weights corre-
sponding to the action �, x is the input vector, and � is the
exploration rate given as a part of genetic information. The
value of � should gradually decreases during learning process
since a robot would be better to aggressively explore to find
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Figure 4: Neural network to decide robot’s behavior.

better strategy in the early phase and would be better to exploit
its strategy after enough times of experience. Because of this
reason, the genome includes the value of � at both the initial
step and the final step of robot’s life.

The learning rule is based on the one step Q-learning
[Lin 92] as follows.

∆�� � � � ��� � � max
�

�
�
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���1

����1�2
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where �� is the reward acquired at time �, � is learning rate
(0 � � � 1), and � is discount rate (0 � � � 1). The values
of learning rate and discount rate are encoded in the genome.

In the experiment, the input vector consists of seven visual
information, amount of front ashes, its time difference, and
constant value one as a bias, totally ten elements. The value
of reward is the amount of ashes the robot absorbed.

3.4 Genetics

Genetic information is represented on two chromosomes in
this experimental model, one includes the initial values of
connection weights 	� �
 � 1� 2� � � � � 30� of the neural net-
work and the other one includes some learning parameters de-
scribed above. Each real value is encoded in eight bits integer
on the gene. The integer values on chromosome correspond-
ing to connection weights are signed, that is from �128 to
127, and corresponding to learning parameters are unsigned,
that is from 0 to 255. At the start point of each generation,
each robot starts learning after resetting the values of learning
parameters and connection weights of the neural network ac-
cording to the new genetic information. The correspondence
between the integer values on genotype and the real values
on phenotype is shown in Table 1. Learned characteristics
do never inherit directly to the successors, that is, it is not
Lamarckian but Darwinian evolution. Crossover operation is
done as uniform crossover on each chromosome. Mutation is
done as one point mutation by adding/subtracting a uniformly
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First generation 50th generation

Figure 5: Traces of robots in one generation where life span is 500 steps.

Table 1: Correspondence between the values on genotype and
phenotype.

genotype divider phenotype
	� �128–127 64.0 �2�0–1.98
� 0–255 127.5 0.0–2.0
� 0–255 511.0 0.0–0.5
� 0–255 255.0 0.0–1.0

distributed random integer in ��13� 13� to/from randomly se-
lected locus. The result value of mutation is limited in the
range of eight bits signed or unsigned integer.

It is difficult for some robots in the initial population to carry
out the task because learning parameters of random values
often makes it worse to do it. Guided by the fitness function,
intrinsic characteristics are adjusted through the evolutionary
process.

4 Experimental results

In this section, we show two kinds of experiments by computer
simulation. The first is on the effect of the size of mating group
� , and the second is on the effect of the length of life span
�. In both cases, robots acquired collision avoidance strategy
that enables efficient ash sweeping, as shown in Figure 5. To
clarify the effect of combination of learning and evolution, we
added experimental results on the cases of only learning and
only evolution.

4.1 Effects of mating group size

We examined evolutionary process in the environment shown
in Figure 2 that includes 50 robots with a variety of the size
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Figure 6: Evolutionary process of average performance of
individual on a variety of mating group size over thirty trials,
and the standard deviation over the trails, where life span
� � 128 steps.
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Table 2: Average performance of 128th generations and the
standard deviation over thirty trials, for various size of mating
group (� ).

� average STD
3 0.203754 0.00776261
6 0.205030 0.00859252
9 0.204091 0.00821120

12 0.204938 0.00683015
18 0.207323 0.00536445
27 0.205464 0.00503067
50 0.207607 0.00464391

of mating group � , where � � 3� 6� 9� 12� 18� 27� 50. We did
the simulation of 128 generations on thirty distinct random
number sequences where the life span is 128 steps for each
� . Figure 6 shows evolutionary processes of the average
performance of individual and the standard deviation over
thirty trials on each � .

The best case is on � � 50, but it is possible to achieve
enough performance even if � � 3 in this task as show in
Table 2. This indicates that local mating strategy is effective
enough comparing with global selection. The difference of
average performance between the case of � � 3 and 50 is
0.003853, that is less than the value of standard deviation for
� � 3.

4.2 Effects of life span length

In the same settings as the previous experiment, we ex-
amined a variety of life span length �, where � �
16�32� 64� 128� 256� 512 and � � 3� 6. We did the simulation
of 16,384 steps on thirty distinct random number sequences
for each combination of � and � . Figure 7 shows evolution-
ary processes of the average performance of individual and
the standard deviation over thirty trials on each �.

It is difficult to evolve under too short life span, because the
performance depends on the robot’s position rather than the
control strategy and the fitness values are unstable for the same
genetic information. On the other hand, long life span guar-
antees a stable improvement process but it takes many steps to
achieve enough performance because of slow generation ex-
changes. As shown in Figure 7, there is the optimal length of
life span in terms of fast convergence, possibly depending on
the mating group size � and the type of application domain.

4.3 Effects of combination of learning and evolu-
tion

Figure 8 shows the performance improvement on the case
of learning without evolution by average and standard de-
viation among thirty trials of distinct random number se-
quences. Learning parameters are set that � � 0�3� � � 0�9
and � � 0�9 � �0�816383� � where � indexes the number
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Figure 7: Evolutionary process of average performance of
individual on a variety of life span length over thirty trials,
and the standard deviation over the trails, where mating group
size � � 3 and 6.
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Figure 8: Learning process without evolution.

of steps (� � 0� 1� 2� � � � � 16383). These values were care-
fully selected through some times of preliminary experiments
to produce the best performance. We initialize the value of
connection weight by random numbers.

As the figure clearly indicates, it is difficult to realize enough
performance only by independent learning. The average per-
formance at 16,384th step is less than 0�18 though it is more
than 0�2 in the case shown above.

Figure 9 shows an evolutionary process without learning.
It looks better than the case of combination. It is true when
the life span length is either short or long, but, as Figure 10
shows, learning is effective when � � 32 and � � 3, and
� � 64 and � � 6.

This phenomenon might be by Baldwin effect
[Baldwin 1896, French 94] in which plasticity of phenotype
guides evolution to jump up to the next stage. Figure 11 shows
a typical evolutionary process of the distribution of gene values
corresponding to learning rate �. The gene of the value about
130 suddenly disappeared at about 50th generation, then the
value less than 64 got a majority. The lower learning rate leads
less modification of weights, that is, learning is suppressed. It
suggests that there occurred replacement from plastic learners
to intrinsic winners. However, we have never found any evi-
dence that learners guide the evolutionary process yet, at least
in our experiments.

5 Conclusion

We proposed an orientation toward a feasible method to ap-
ply an evolutionary computing scheme to real robot team.
Through the experiments described above, we certified on the
framework of local mating strategy that

1. it works well enough even if the size of mating group is
three,

2. the optimal length of life span exists for fast adaptation,
and
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Figure 9: Evolutionary process without learning.
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Figure 10: Comparison between evolutionary process with
learning and without learning in the case of � � 3 and � �
32, and � � 6 and � � 64.

3. learning helps or disturbs evolutionary improvement de-
pending on the life span length.

These statements might stand at least in the application domain
we examined, but we can expect that the proposed method is
effective in some similar type of other domains.

Adding to applying to the other types of tasks, our future
work will include adaptive length of life span and mating
group size. The method to find partner to exchange genetic
information may have to be reconsidered in order to make it
more feasible for hardware realization. There are also many
interesting theme to challenge such as emergence of coopera-
tion, species differentiation, global versus selfish goal, and so
on.

The local mating strategy proposed here has a potential pos-
sibility to produce species differentiation in local area because
the genetic operation is only possible among neighbor robots.
An experiment on the more complex environment might be
required to see this type of phenomena.
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