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Abstract

This paper describes an experimental result on
evolutionary processes of learning agents in a
multi-agent environment, under our objective to
propose an orientation toward a feasible design
of a group of autonomous mobile robots that can
evolve in the software level. After the work of a
constant of steps, each agent gathers the degree
of task achievement and the genetic information
from the nearest N — 1 agents to revise its own
genome. [t starts learning again after this ge-
netic operation. The experiment described here
focuses on the effects of mating group size N and
life span length.

Introduction

Learning is a strategy to adapt to the environment
for autonomous agent. In a multi-agent situation, it
also works enough with communication among agent
as described in (Weifl 1993; Min 1993; Unemi 1993).
On the other hand, evolution is also another strategy
to adapt to the environment for a population of agents,
though it seems hard to apply its framework directly to
real robot team. The primary purpose of our research
partially described here is to propose an orientation
toward a feasible design of evolvable robot team.

There are several researches on relation between evo-
lution and learning, such as Baldwin effect (Baldwin
1896; French & Messinger 1994), optimizing learning
parameters (Unemi et al 1994), combination of ar-
tificial neural network and genetic algorithm (Belew,
MecInerney & Schraudolph 1992), and so on. Evolu-
tionary robotics is also a challenging field but only few
practical results have been reported, such as evolution-
ary adaptation of neural network to control a mobile
robot (Floreano & Mondada 1993). Here we focus on
the design of life cycle that can realize a type of evo-
lution in a multi-agent environment.

Each agent proposed here has a mechanism of sim-
ple reinforcement learning, but learning parameters de-
pend on individual genetic information. It is difficult
for almost all of agents in the initial population to carry
on the task because learning parameters of random val-
ues usually makes it worse to do it. Guided by the

Figure 1: Example view of sweeping ashes task.

fitness function, intrinsic characteristics are adjusted
through the evolutionary process.

This paper focuses on the effect of the mating group
size and life span length. As described below, experi-
ments by computer simulation were done on a variety
of mating group size and life span length to investigate
thier effects.

Experimantal task and agent

The task we designed to examine the evolutionary pro-
cess is to sweep ashes on the floor by a group of au-
tonomous mobile vacuum cleaners. Each cleaner is an
autonomous agent viewed as an individual in the evo-
lutionary process. Each agent cleans up all amount
of ashes just under itself in each time step, but ashes
spreads and increases gradually. Figure 1 shows an
example of display of the simulator.

Each agent has seven distance sensors to detect any
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Figure 2: Neural network to decide agent’s behavior.

object at its front in a limited area. The working space
is a room of square shape surrounded by walls and
there are some other walls as obstacles. The agent
detects a wall and another agent by seusors but it has
no explicit signal to divide which type of object it is
seeing. The agent is also able to detect the amount of
ashes on the floor at just its front.

The agent moves forward by constant length and can
turn by constant degree in each time step. It stops but
can turn when it collides against any object.

The above settings are designed to satisfy the fol-
lowing condition.

1. The work is by a group but it doesn’t require sophis-
ticated cooperation among members.

2. Each member can measure the degree of individual
task achievement.

3. Information on behavior strategy of an agent is
reusable for another agent.

The main strategy the agent should acquired to
achieve the task is collision avoidance, such as rules
if you detected any object in the left side then turn
right and if you detected any object in the right side
then turn left.

Learning

Each agent has a potential ability of reinforcement
learning based on simplified neuro Q-learning as shown
in Figure 2.

In each time step, the agent selects its action under
the following probability.

P(a) x exp <W3X>

T

where « indicates the type of action, turn left, go
straight or turn right, w, is the vector of connection
weights corresponding to the action a, x is the input
vector, and 7 is the exploration rate given as a part of
genetic information.

The learning rule is as follows, based on the one step
Q-learning (Lin 1992).
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where r; is the reward acquired at time ¢, 3 is learning
rate (0 < 4 < 1), and v is discount rate (0 < v <
1). The values of learning rate and discount rate are
encoded in the genome.

In the experiment, the input vector consists of seven
visual information, amount of front ashes, its time dif-
ference, and constant value one as a bias, totally ten
elements. The value of reward is the amount of ashes
the agent absorbed.

Evolution

Evolution is an adaptive process by a population of
organisms, which seams suitable for a framework to
design a adaptive multi-agent system if an agent can
spawn its offspring. However, it is difficult for arti-
ficial robot system to reproduce itself in the current
technology. One elegant idea to apply an evolutionary
computation to a real robot is proposed in (Floreano
& Mondada 1993) though it is only for a single agent.
The following mechanism we propose here is for multi-
agent evolution.

To avoid difficulty to apply evolutionary computing
scheme to a real robot system, each member gathers
information on fitness and genetic code of the nearest
N — 1 others around it, and then embeds the genetic
information of superer one if exists. Fitness is mea-
sured as the score of task achievement, that is equal to
total amount of ashes it absorbed in its life span.

Genetic information is represented on two chromo-
somes in this experimental model, one includes the ini-
tial value of connection weights of the neural network
and the other one includes some learning parameters
described above. Each real value is encoded in eight
bits integer on the gene.

We employ a local mating strategy in which selection
1s done among local sub-group. For each agent, the
following genetic operation is applied.

1. After L steps passed, that is, it reaches the end point
of life, it gathers information oun fitness and genetic
code of the nearest NV — 1 others around it to make
the list of information of NV individuals including it-
self, and sorts them by fitness.

2. It makes no change if it is in the upper third of N.

3. It embeds a part of genetic code of randomly selected

one from the upper third if it is in the middle third.
This operation is done as one point crossover on each
chromosome.

4. Tt replaces its genetic code by a mutant of randomly

selected one from the upper third if it is in the lower
third. This operation is done as one point mutation
by adding/subtracting a random number to/from
randomly selected locus.
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Figure 4: Evolutionary process of average performance
of individual on a variety of mating group size.

After the above genetic operation, each agent starts
learning again resetting the weight values of neural
network connection according to the new genetic in-
formation. The reason why we denote the number of
steps between genetic operations by life span is that
this restart process is similar to the birth of baby in
the software level.

Experimental results

In this section, we show two kinds of experiments by
computer simulation. The first is on the effect of the
size of mating group IV, and the second is on the effect
of the length of life span L. In both cases, agents ac-
quired collision avoidance strategy, as shown in Figure
3. To clarify the effect of combination of learning and
evolution, we added experimental results on the cases
of ouly learning and only evolution.

Effect of mating group size

We examined evolutionary process in the environment
shown in Figure 1 that includes 50 agents with a
variety of the size of mating group N, where N =
3,6,9,18,27,50. We did the simulation of 50 genera-
tions on ten distinct random number sequences where
the life span is 500 steps for each N. Figure 4 shows
evolutionary processes of the average performance of
individual on each N.

The best case is on N = 50, but it is possible to
achieve enough performance even if NV = 3 in this task.

Effect of life span length

In the same settings as the previous experiment, we
examined a variety of life span length L, where L =
25,50, 100, 200, 400, 800, 1600 and N = 6 fixed. We
did the simulation of 25,600 steps on ten distinct ran-
dom number sequences for each L. Figure 5 shows
evolutionary processes of the average performance of
individual on each L.

0.21
0.2
£ 019
2
@
2 0.18
© i
1S P
£ 017 ¢/ ¢ life span A
[} [ 25 —
Q . ;
© 016 | ! 50 - 1
= [ 100
o} R 200
3 015 ¢ T 400 ----
R 800 ----
014 . 1600 -~
013 L L L L L
0 5000 10000 15000 20000 25000

steps

Figure 5: Evolutionary process of average performance
of individual on a variety of life span length.
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Figure 6: Learning process without evolution.

It cannot evolve under too short life span because it
makes the fitness values unstable. On the other hand,
long life span guarantees a stable process but it takes
many steps to achieve enough performance. As shown
in Figure 3, there is the optimal length of life span
possibly depending on the type of application domain.

Effect of combination of learning and
evolution
Figure 6 shows the performance improvement on the
case of learning without evolution by average and stan-
dard deviation among ten trials of distinct random
number sequences. Learning parameters are set as
8=0.5,7v=0.8,7=1-(0.9/25600) - t where ¢ indexes
the number of steps (t+ =0,1,2,...,25599). These val-
ues were carefully selected through some times of pre-
liminary experiments to produce the best performance.
We initialize the value of connection weight by random
numbers.

As the figure clearly indicates, it is difficult to realize
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Figure 3: Traces of agents in one generation where life span is 500 steps.
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Figure 7: Evolutionary process without learning.

enough performance ouly by independent learning.

Figure 7 shows an evolutionary process without
learning. It looks better than the case of combina-
tion. It is true when the life span length is eather
short or long, but, as Figure 8 shows, learning is ef-
fective when L = 100. This phenomenon should be
by Baldwin effect (Baldwin 1896; French & Messinger
1994) in which plasticity of phenotype guides evolu-
tion to jump up to the next stage, though we have not
certified it by precise analysis on the genetic trace of
evolutionary process.

Conclusion

We proposed an orientation toward a feasible method
to apply an evolutionary comuting scheme to real robot
team. Through the expriments described above, we
certified on the framework of local mating strategy that

1. local mating strategy is good enough even if the size
of mating group is three,

2. the optimal length of life span exists for fast adap-
tation, and
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Figure 8: Comparison between evolutionary process
with learning and without learning in the case of L =
100.



3. learning helps evolutionary improvement with a suit-
able life span length,

at least in the application domain we examined.

Our future work will include adaptive length of life
span and mating group size. The method to find
partner to exchange genetic information may have to
be reconsidered in order to make it more feasible for
hardware realization. There are also many interesting
theme to challenge such as emergence of cooperation,
species differentiation, global versus selfish goal, and
SO omn.

The local mating strategy proposed here has a po-
tential possibility to produce species differentiation in
local area because the genetic operation is only possible
among near agents. An experiment on the more com-
plex environment might be required to see this type of
phenomena. This is also interesting from a view point

of Artificial Life.

References

Baldwin, J. M. 1896. A new factor in evolution. Amer-
1can Naturalist 30: 441-451.

Belew, R. K.; McInerney, J.; Schraudolph, N. N. 1992.
Evolving networks: using the genetic algorithm with
connectionist learning. In Langton, C. G. et al eds.
Artificial Life II, 511-547. Addison Wesley.

Floreano, D.; Mondada, F. 1993. Automatic Cre-
ation of an Autonomous Agent: Genetic Evolution
of a Neural-Network Driven Robot. In Proceedings of
the Third International Workshop on Simulation of

Adaptive Behavior, 421 430. MIT Press.
French, R. M.; Messinger, A. 1994. Genes, Phenes

and the Baldwin Effect: Learning and Evolution in
a Simulated Population. In Proceedings of the Forth
International Workshop on the Synthesis and Simula-
tion of Living Systems, 277-282. Mass.: MIT Press.

Lin, L.-J. 1992. Reinforcement Learning, Planning
and Teaching, Machine Learning 8: 293-321.

Min, T. 1993. Multi-agent Reinforcement Learning:
Independent vs. Cooperative Agents. In Proceedings
of the Tenth International Conference on Machine
Learning, 330-337. San Mateo, Calif.: Morgan Kauf-
mann Publishers, Inc.

Unemi, T. 1993. Collective Behavior of Reinforce-
ment Learning Agents. In Proceedings of 1993
IEEE/Nagoya University WIWW On Learning and
Adaptive System, 92-97. Japan: Nagoya University.
Unemi, T.; Nagayoshi, M.; Hirayama, N.; Yano, I;
Nade, T; Masujima, Y. 1994. Evolutionary Differen-
tiation of Learning Abilities — a case study on opti-
mizing parameter values in Q-learning by a genetic
algorithm, In Proceedings of the Forth International
Workshop on the Synthesis and Simulation of Living
Systems, 331-336. Mass.: MIT Press.

Weil, G. 1993. Learning to Coordinate Actions in
Multi-Agent Systems. In Proceedings of the 13th In-

ternational Joint Conference on Artificial Intelligence,
331-316. International Joint Conference on Artificial
Intelligence, Inc.



