
SBArt4 – Breeding Abstract Animations in Realtime

Tatsuo Unemi

Abstract— SBART was developed in early 1990’s as one of
the derivatives from Artificial Evolution by Karl Sims. It has a
functionality to create a movie from a bred image through
post-processing. The innovation of graphics processing unit
(GPU) in these years improved the calculation performance
to be fast enough to realize breeding animations in realtime
on the personal computer. SBArt4 utilizes the advantage of
GPU by compiling each expression in genotype into a type of
OpenGL shading language. Even when it renders each frame
of the animation in realtime, it achieves enough speed for users
to evaluate the product of an abstract animation immediately.
Though there were a number of problems because of archi-
tectural difference between CPU and GPU, almost compatible
functionalities with the previous version have been implemented
including reference to an external image and integer-based
bitwise operation. Through experimental executions on some
different hardware configurations, it was certified that it runs
fast enough on recent consumer machines though some older
machines are not powerful enough.

I. INTRODUCTION

One of the active application fields of Interactive Evo-
lutionary Computing (IEC) is Evolutionary Art mainly on
abstract drawings. SBART [1] by the author is one of the
derivatives from Artificial Evolution by Karl Sims [2], a
tool to breed two dimensional abstract image utilizing a
functional style of genotype to calculate a color value from
xy coordinates for each pixel.

The previous version SBART3 [3] also has a functionality
to create a movie from the result of breeding in a post-
processing. To produce a series of frame images for an ani-
mation, the image for each frame is drawn using not only the
spatial coordinate but also the time variable. The processing
speed of personal computers was not fast enough for realtime
rendering in this purpose at that time. It took some seconds
for each frame for screen resolution of standard TV quality.

The performance of CPU for personal computers has im-
proved as ten times faster than the age when the first version
of SBART on UNIX workstation was released. However, it
is still not enough for realtime rendering because it requires
faster than 0.07 seconds per frame even when the expression
includes more than 100 symbols and the image’s resolution
is of Full High-Definition. Another innovation in recent years
is on Graphics Processing Unit (GPU). It was originally
developed for acceleration of 3D rendering in polygon-based
computer graphics, but it is attracting attention from various
engineering fields in which hi-performance computing is re-
quired, such as fluid dynamics, structural analysis, molecular
structure calculation, and so on, because it potentially has a
huge power for parallel processing of number crunching. The

Tatsuo Unemi is with the Department of Information Systems Science,
Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577 Japan
(phone: +81 42 691 9429; email: unemi@iss.soka.ac.jp).

Fig. 1. An example field window of SBArt4.

rendering process in SBART is not on 3D polygons but on
2D pixels. In this type of purpose, OpenGL shading language
(GLSL) [4] is a suitable tool for software development. It is
a high level programming language that has a similar syntax
with C language for description of a process applied to each
pixel. A program fragment is compiled into a set of machine
codes, and then is sent from CPU to GPU with data to
compute large number of pixels in parallel.

The new version of software named SBArt4 utilizes the
advantage of GPU by compiling each expression in genotype
into Core Image Kernel Language [5], that is a dialect of
GLSL supported by Apple Corp. in Mac OS X 10.4 or
later. It is relatively easy to embed these functionalities in
an application software by using Core Image framework
available in the standard free programming environment of
Xcode for Mac OS X.

The following sections describe system overview, compi-
lation into GLSL, performance, and typical examples. Then
this paper is closed with concluding remarks and future
extension.

II. SYSTEM OVERVIEW

SBART is a typical IEC application based on Simulated
Breeding that allows the user to select individuals as parents
in order to reproduce a population in the next generation.
Differently from the framework of Interactive Genetic Algo-
rithm, it uses no scalar grade for evaluation, that is, selected
individuals become parents and the others are discarded.
A typical graphical user interface named “field window”
is shown in Figure 1 in which whole of the population
containing 20 individuals are displayed in a window.

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 4004

TABLE I
SYMBOLS FOR EXPRESSION IN GENOTYPE

Binary Operator Unary Operator Variable

+ − (x, y, t)

− abs (x, t, y)

× sin (y, x, t)

÷ cos (y, t, x)

pow log (t, x, y)

hypot exp (t, y, x)

max sqrt
min sign
and image

mdist

A. Genotype

Each individual has a genotype that includes a tree
structure for a mathematical expression constructed from
operators as non-terminal symbols and variables and con-
stants as terminal symbols. A genetic operation of mutation
or crossover is applied to the genotypes of the selected
individuals in a style of Genetic Programming [6], that is,
mutation by replacing a node by a symbol randomly chosen,
and crossover by exchanging subtrees between parents.

Table I shows a set of symbols for operators and variables
implemented in SBArt 4.1. Some of the operations have
constraints for the domain of argument values such as square
root and logarithmic function. To avoid an error during the
calculation, some types of modification are applied to these
cases as described later. For the trigonometric functions, sin
and cos, each argument is multiplied by π to adjust it to the
domain of the argument value given by another function.

Each variable is a vector constructed from three scalar
variables, x, y, and t. x and y express spatial location of
the target pixel, and t is a time variable for animation. A
constant is represented in one scalar value, but it is expanded
to a vector of three elements of the same values.

In addition to an expression, the range of time variable t
is also included in a genotype because it is an important
parameter to create an animation. This feature was not
implemented in the previous version because the animation
was not a target for breeding but for post-processing. The
range is represented by a pair of floating point numbers,
the start value t0 and the span value s, that is, the range is
[t0, t0 + s] if s > 0. The value starts from t0 and increases
until it reaches t0 + s when s is positive, decreases when s
is negative.

One of the genetic operations applied to the range of time
variable is a type of mutation commonly used in a domain
of continuous numerical values by adding a random number
within a restricted range and distribution. In the current
implementation, simple uniform distribution is employed of
which range is depending on the value of span s in the
genotype. The crossover is done simply by random choice
of a value from one of the parents for each value of start or
span.

B. Phenotype

The expression described above is to calculate the color
value from xy coordinate and time t for each pixel in the
image as the phenotype of individual. Each of the arguments
and the results of any operation is a vector of three elements
where the final result is interpreted as a color value in a space
of hue, saturation, and brightness (HSB). Therefore, the time
complexity in sequential computation to generate one frame
image of a phenotype from a genotype is proportional to the
multiplication between the number of pixels in the image and
the number of operations in the expression. The number of
steps to execute operations can be reduced to the depth of
the tree structure by a parallel processing, but this point is
not so much effective because the reduced steps depends
on how many binary operators the expression includes.
The parallel processing is more effective on the concurrent
calculation among pixels, because it is theoretically possible
for all pixels to be calculated in parallel. The rendering time
is depending on the number of processing cores in GPU
because it is usually less than the number of pixels in a
single image.

The coordinate system in an image is arranged so that the
center is the origin (0, 0), the y coordinate of the top and
bottom edges are 1 and −1 respectively, and the x coordinate
is arranged in the same scale of y axis. If the aspect ratio of
the image is 4 : 3 for example, the range of x coordinate is
[−1.33̇, 1.33̇].

The calculation for each pixel is executed under the
substitutions on the position of pixel for x and y, and time
value for t.

C. Time variables

In addition to the time variable t in variable symbols,
constant values are also the target for varying along the time
axis by multiplying a factor u + 1 where u is another time
variable in the same range of t. Two types of progression
on the time variables were implemented. One is to simply
iterate the value from t0 to t0 + s for both t and u where
these two variables always share the same value, that is,

t = u = t0 + s T (1)

where T is a variable repeatedly moving from 0 to 1.
The other one is to create a loop movie of which frame

at the end smoothly connectes to the frame at the beginning.
In this case, the values of two time variables are calculated
based on equations

t = t0 + s sin 2πT, (2)

u = t0 + s · 1− cos 2πT

2
. (3)

These were designed so that both values start with the same
one as t0 but their phases in every moment are different.

D. Example

Figure 2 shows an example of genotype illustrated in a tree
structure and the image as its phenotype. The expression of

4005

Fig. 2. An example of genotype and phenotype of an individual.

genotype in a mathematical formula is as follows.

exp sin cos
(
−0.433− exp sin

exp sin yxt+ txy
xyt

2

)
+ txy

xyt

2
(4)

The symbol named “mdist” is a function that calculates the
average value between two arguments. yxt and the other
sequences of three italic letters are variables listed in Table I
constructed from three scalar variables. For example, yxt
stands for (y, x, t). The coefficient π to be multiplied to the
arguments of trigonometrical functions are omitted in the
equation for simplicity.

III. COMPILATION INTO GLSL

GLSL has a syntax similar to C language but some special
data types and built-in functions are available for graphic
rendering and pixel handling. For example, it has data types
to represent vectors, such as vec2, vec3, and vec4 for two,
three, and four scalar elements of float. Core Image Kernel
Language is a dialect of GLSL that has more additional
restrictions in the control statements including a condition,
such as if, for, and while. This type of statement is
allowed only when the condition can be determined before
the execution. The three arguments’ operator X ? Y : Z and a
built-in function compare described below are available for
conditional selection of expression instead of combination of
if and else statements.

A. Example

Figure 3 shows the code generated from the expression
shown in Figure 2 and Equation 4. The main part represent-
ing the expression is in the five lines from ninth line that
starts with vec3 v=.

The first three lines are comments including the range
of time value. The next two lines are the definition of
subfunction named divide for division symbolized by ÷
in Table I and Figure 2. To avoid an error because of
zero divisor, division must not complied simply into normal
divisor denoted by /. Instead, the definition of safe version of
division function is added when the expression in genotype
includes one or more operators of division. The built-in
function compare takes three arguments of vectors to pick

1.// Core Image Kernel produced with SBArt4 (4.1 beta 1)
2.// by Tatsuo Unemi, 2010-01-25 18:16:35 +0900
3.// Time variable t = [-0.312925, 1.068027] (Linear)
4.vec3 divide(vec3 a, vec3 b){
5. return a/compare(b,b,compare(-b,b,vec3(1.)));}
6.vec3 cnst(float u,float c){return vec3(c+c*u);}
7.kernel vec4 individual(float t, float u){
8. vec2 p=destCoord();
9. vec3 v=((exp(sin((cos(((cnst(u,-0.433000))-(exp(
10. sin((((exp(sin((vec3(p.y,p.x,t))*3.141592)))+
11. (divide(vec3(t,p.x,p.y),vec3(p.x,p.y,t))))/2.)*
12. 3.141592))))*3.141592))*3.141592)))+
13. (divide(vec3(t,p.x,p.y),vec3(p.x,p.y,t))))/2.;
14. float th=v.z*6.28394,
15. x=v.y*cos(th)/3.,y=v.y*sin(th)/sqrt(3.);
16. v=mod(abs(vec3(v.x+x+y,v.x-x-x,v.x+x-y))/2.,2.);
17. v=compare(v-1.,v,2.-v);
18. return vec4(compare(-v,pow(v,vec3(1.75)),vec3(0.)),
19. 1.);}

Fig. 3. A sample code in Core Image Kernel Language.

!" !# !$!% & % $ # "

%

Fig. 4. The saw-shaped function for mapping the final scalar value within
[0, 1].

up elements from second or third argument depending on
the value of corresponding element in first argument. The
element in second argument is chosen if the element in first
argument is negative, otherwise the element in third argument
is chosen. The functional expression vec3(1.) means a
vector of three 1.s. The definition specifies division is applied
only when the divisor is not zero.

The sixth line is the definition of subfunction named cnst
for a constant value. Because it varies with time variable u
as described above, this subfunction is necessary when the
expression includes a constant.

The seventh line is a declaration of main function. It
takes two scalar arguments t and u corresponding to time
variables t and u, and returns a vector of four elements
that represents a color value for a pixel. The eighth line
refers to a built-in function destCoord to assign spatial
coordinate of the target pixel to the vector variable p. The
elements p.x and p.y are used in a variable. For example,
vec3(p.y,p.x,t) in the tenth line expresses a variable
vector (y, x, t).

The final part from the fourteenth line is to convert the
result of expression in genotype to the final value of RGBA
color space. It employs a simplified version of translation
from HSB to RGB with a side effect that makes the produced
image more interesting. The sixteenth line that includes mod
and abs and the seventeenth line with compare are to
confine arbitrary scalar values of each element within [0, 1]
by mapping them using a saw-shaped function,

f(x) =

{
x mod 2 if x mod 2 < 1
2− x mod 2 otherwise

(5)

illustrated in Figure 4. The final line includes a power func-

4006

tion for gamma correction to darken the color appropriately.
The alpha component in the final value in RGBA space is
always 1. to indicate it is opaque.

B. Modified functions

As described above, some of the operators must be modi-
fied to avoid an undesirable runtime error due to a violation
on the domain of the arguments. This special consideration
must be applied to three of the operators listed in Table I,
÷, log, and sqrt. The modified definitions are as follows.

x÷ y =

{
x if y = 0
x
y otherwise

(6)

log x =

{
0 if x = 0
ln |x| otherwise

(7)

sqrt x =

{√
x if x ≥ 0

−√−x otherwise
(8)

Similar type of care must be taken for the power function
because the compiler producing the machine code breaks the
built-in function pow down into a combination of exponential
and logarithmic functions. This means it causes an error
when the first argument is zero unless any special handling
is made.

C. Selective functions

Almost all of the operators calculate a scalar value for each
element independently, but the selective functions “min” and
“max” depend on the combination of elements. Both func-
tions take two arguments and pick up one of them according
to the value of first element that expresses brightness. “min”
returns the darker argument, and “max” returns the brighter
argument. The code of definition of these functions are as
follows.

vec3 myMax(vec3 a,vec3 b)
{return (a.x>b.x)?a:b;}

vec3 myMin(vec3 a,vec3 b)
{return (a.x<b.x)?a:b;}

D. Function to import external image data

The unary operator “image” is to embed data stored in
an external image typically of a photograph. It takes one
argument and interprets the first element as the horizontal
coordinate and the second as the vertical coordinate. The
result image is just identical to the external one if the
argument is a variable (x, y, t). The coordinate system on the
external image to indicate which pixels it refer to is adjusted
so as to fit the vertical span of the external image to the
height of the result image. The horizontal axis is adjusted so
as to keep the aspect ratio.

Figure 5 shows the code to define the subfunction. It
takes three arguments. The first is the argument value of
the expression given in the genotype, the second is a two
dimensional vector that expresses the size of external image
in pixels, and the third is an image sampler that provides
pixel values of external image. sampler is a built-in data

vec3 image(vec3 a, vec2 s, sampler img){
vec3 c = sample(img,s-abs(s-mod((a.xy+s.xy/vec2(s.y))

*s.y/2.,s*2.))).xyz;
c = compare(-c,pow(c,vec3(1./1.75)),vec3(0.));
float x = c.x-2.*c.y+c.z, y = c.x-c.z;
float r = sqrt(x*x+3.*y*y);
float th = (r<=0.)?0.:(y>=0.)?

acos(x/r):6.283184-acos(x/r);
return vec3((c.x+c.y+c.z)/1.5,r,th/6.283184);}

Fig. 5. The definition of “image” subfunction.

vec3 myAnd(vec3 a,vec3 b){
vec3 c=mod(a*10000.,16777216.),

d=mod(b*10000.,16777216.),e,f=0;
int i; for (i = 16777216; i > 0; i /= 2) {

e = vec3(i);
f += compare(c-e,vec3(0),compare(d-e,vec3(0),e));
c -= compare(c-e,vec3(0),e);
d -= compare(d-e,vec3(0),e); }

return f/10000.; }

Fig. 6. The definition of bitwise “and” subfunction.

type for this purpose. The values of latter two arguments are
given from outside of the program fragment when rendering
process starts. To receive the information, the declaration of
kernel function definition in the seventh line in Figure 3 is
extended with two more arguments same with these ones as
follows.

kernel vec4 individual
(float t, float u, vec2 s, sampler img)

Because a value given for coordinate has arbitrary value
as the result of bred subexpression, the external image is
expanded as if it has infinite size without boundary by filling
the area with tiles of same or flipped images so that tiles are
adjacent smoothly each other. The second line in Figure 5
picks up an RGB color value by a built-in function sample
with the appropriate coordinate in the second argument,
where a.xy denotes two dimensional vector constructed
from first two elements in a three dimensional vector a.

The fourth line is for gamma correction to adjust it for
further calculation, and the rest part is a simplified translation
from RGB to HSB that works just as the inverse of the
function from HSB to RGB in the bottom part of Figure 3.

E. Integer-based bitwise calculation

Because the operators for bitwise logical calculation are
not supported in Core Image Kernel Language, a kind of
trick is necessary for an integer-based bitwise operator named
“and” that was introduced in the previous version of SBART.
Figure 6 shows its definition, utilizing a for loop by dividing
the control variable i by two. This operator produces a type
of discrete fractal pattern that is useful to enrich the variations
of result images.

IV. PERFORMANCE

The current version was tested with Mac OS X 10.6 on
some different machines. It does not run fast enough on a
relatively older machine, such as iMac 1.83GHz with ATI
Radeon X1600, but the animation is smooth enough on recent
ones, such as MacBook Pro equipped with 3.06GHz Intel

4007

ATI Radeon X1600

nVIDIA GeForce 7300 GT

nVIDIA GeForce 9400

ATI Radeon HD 2600 Pro

ATI Radeon HD 4670

0 10 20 30

Gene size = 6

ATI Radeon X1600

nVIDIA GeForce 7300 GT

nVIDIA GeForce 9400

ATI Radeon HD 2600 Pro

ATI Radeon HD 4670

0 10 20 30

Gene size = 100

ATI Radeon X1600

nVIDIA GeForce 7300 GT

nVIDIA GeForce 9400

ATI Radeon HD 2600 Pro

ATI Radeon HD 4670

0 10 20 30

Gene size = 200

Field window

fps

1280 × 720 1920 × 1080

Fig. 7. Rendering Performance on Different Machines

Core 2 Duo Penryn CPU and NVIDIA GeForce 9400M GPU.
The animation of single individual on a zoomed window
works smoothly in the standard resolution of analog TV in all
of the cases. It got slower but still acceptable for the full HD
size of 1,920 by 1,080 pixels. The performance depends on a
number of factors, such as frame buffer size, kernel memory
size, the number of processing units, bus speed between CPU
and GPU, and so on.

One of the troubles is on the simultaneous live animation
for all twenty individuals in a field window. Though the
image size for each individual is small, it does not work
in enough smoothness on some machines. The main reason
is that the program fragments for individuals are separated
and they are loaded into GPU in turn for each frame. It might
be able to be solved by unifying all of codes into a single
program fragment, but it has not been examined yet since it
is somewhat complicated to build up such a unified program.
Instead, a caching mechanism was examined. It memorizes
each frame image in the main memory to display it when the
same frame image should be displayed again in later cycles.
A capacity of memory is consumed, but it is negligible when
the number of frames is less than 100 and the speed got
faster enough after it completes caching the images for all
of the necessary frames. It also requires a time to copy each
image from GPU to CPU, but it is also negligible because
the image size is small. The live animation is organized in

15 frames per second (fps) and 4 seconds in duration of one
cycle for the default settings. The total number of frames in a
single field window is 15 fps × 4 seconds × 20 individuals
= 1,200. Therefore it occupies 120 pixels for width × 90
pixels for height × 4 RGBA components × 1,200 frames ≈
5 M bytes without compression in a typical field window.
This size is not so large waste of memory capacity for the
recent machines even if the user opens tens of field windows.

Figure 7 summarizes the throughputs in fps on some ma-
chines of different hardware configurations for two different
sizes of single images and one field window. The case of
field window does not include the time to store each image
in the main memory for cache. In all of the cases, three
different sizes of expressions in genotypes were examined.
One is a short expression that includes only six symbols, and
the others contain 100 and 200 symbols that produces rela-
tively complex pattern of phenotype image. The genotypes
examined here were generated randomly excluding the unary
operator “image” and the binary operator “and” because
they require several steps for calculation differently from the
others. Some of the measured values are near from 5, 10,
15, 20, and 30 due to the drawing mechanism in MacOS
X. The rendering process for the screen is triggered every
1/60 seconds even if the data for drawing can be prepared
in shorter time than the interval of refresh rate. The reason
why an older machine is very slow to render a field window
of large genotypes is probably the time required to load and
execute the kernel program fragments.

SBArt4 also has a functionality of multi-field user interface
[7] that allows the user to open arbitrary number of field
windows in addition to arbitrary number of zoomed window.
We restricted the animation running only on the front most
window, because it would be useless for the user and over-
load for the machine if too many animations were running
in all of windows at same time. It is clear that the animation
on a hidden window is meaningless, but also the motions in
windows in the outside of user’s attention is just disturbance
against user’s observation on the focused individual.

V. EXAMPLE PRODUCTION

Figure 8 illustrates the frame sequences of example movies
of the genotype in Figure 2. The upper one is of linear
transition as explained in Equation 1 where the time variable
t and u move from −0.312925 to 1.068027. The lower one
is of cyclic transition in Equation 2 and 3 where t and u
oscillate in different phases so that the final frame image
smoothly continues to the first one.

For the production of such a movie by the previous version
of SBART, we could neither breed the time parameters nor
evaluate the motion in a field window. We needed to imagine
during the breeding process how each image in the popula-
tion would move, because it did not provide any method
to take advantage of interactive evolutionary computing to
breed the motion. It is not sure that an interesting still image
is always connected with an interesting movie. An image of
less interest might be a suitable seed to produce an amazing
movie. Thus, it is important to implement the fast algorithm

4008

Fig. 8. Example movies. The upper one is of linear transition of time variable t from t0 to t0 + s. The lower one is of cyclic transition where the final
frame smoothly continues to the first frame.

of realtime rendering to obtain a wide variation of satisfiable
results.

VI. CONCLUDING REMARKS AND FUTURE EXTENSION

A new version of the software tool named SBArt4 was
introduced, that realized breeding of abstract animation in a
style of interactive evolutionary computing. It requires much
of computation to produce a distribution of colors in images
for each frame in realtime. It would be still difficult if the
calculation relied only on CPU, but recent innovation of GPU
enabled it. By a method to compile a genotype to a program
in GLSL, it became possible to utilize the functionality of this
advanced technology effectively. There were some new type
of difficulties because of difference between the architectures
of CPU and GPU, but some of these problems could be
solved.

The main part of functionalities in the previous version
of SBART has almost completed to be exported to the new
version, but still some points are remaining. Embedding an
external movie instead of the still external image seems
not so difficult because it is enough by feeding each frame
image extracted from the given external movie in the sim-
ilar manner with an external image even though it needs
additional processing for extraction of appropriate frame and
reconstruction of the sampler for GPU. A more difficult
challenge is development of proper method to embed plural
external images for making collage [8] and to import pixel
data of 3D space from movie [3]. Because it is assumed that
the final result of graphics is always a set of pixels in 2D
space, Core Image framework has no feature to handle such
3D “boxel” data as a primitive. It does not seem impossible
but looks difficult to realize within a reasonable costs for
both time and space.

There are some types of functionalities that should be
added or revised because of the newly introduced feature,
that is, animation. The first one is on sound effects. The
previous version has a facility to attach a sound track to the
movie during the post-processing, but it should be embedded
in the breeding process in the new version. In the current
implementation, the parameters for sound wave generation
is outside of the target of breeding, but an graphical user
interface to manipulate them directly by sliders is provided. It
is easy for these parameters to be included in a genotype, but
at the same time it is required to introduce a mechanism of
partial breeding [9] to allow the user to control which feature
should be the target of breeding. Another consideration to be

made is the design of user interface for breeding including
sounds. There are also many researches on it for sounds
and music, but we need to solve more complicated problem
because of combination with visuals as the target of breeding.
A type of user interface that allows the user to select one
individual to listen to might be necessary similarly to the
author’s another approach for music [10].

The second one is on the user’s experience. The system
sometimes produces an animation that includes rapid changes
of clear colors, a similar pattern that used to cause the
trouble on TV animation program in Japan [11]. It is too
strong stimuli for the nerves system of visual perception of
the viewer. It might be necessary to introduce a method to
measure and restrain such a undesirable side effect to avoid
a negative effect to the users’ health.

Visualization of phenotypes is one of the very important
features for successful application of interactive evolutionary
computing. Similarly with the system presented in this paper,
developments in the other application fields that look for the
optimal motion will be accelerated through improvement of
the hardware for graphics processing.

REFERENCES

[1] T. Unemi, “Simulated Breeding: A Framework of Breeding Artifacts on
the Computer,” in Artificial Life Models in Software – Second Edition,
(Chapter 12), Edited by M. Komosinski and A. A. Adamatzky, London,
UK: Springer-Verlag, 2009.

[2] K. Sims, “Artificial Evolution for Computer Graphics,” Computer
Graphics, vol. 25, pp. 319–328, 1991.

[3] T. Unemi, “Embedding Movie into SBART – Breeding Deformed
Movies,” in Proc. of the IEEE Conference on Systems, Man and
Cybernetics, The Hague, Netherlands, 2004.

[4] J. Kessenich, “The OpenGL Shading Language – Language Version:
1.50,” The Khronos Group Inc., http://www.opengl.org/ documentation/
glsl/, 2009.

[5] Apple Corp., “Core Image Kernel Language Reference,” in Mac OS X
Reference Library, http://developer.apple.com/mac/library/ , 2008.

[6] J. R. Koza, Genetic Programming: On The Programming of Computers
by Means of Natural Selection, Cambridge, MA: MIT Press, 1992.

[7] T. Unemi, “A Design of Multi-Field User Interface for Simulated
Breeding,” in Proc. of the third Asian Fuzzy Systems Symposium, Masan,
Korea, pp. 489–494, 1998.

[8] T. Unemi, “SBART 2.4: an IEC Tool for Creating 2D Images, Movies,
and Collage,” Leonardo, vol. 35, no. 2, pp. 171, 189–191, MIT Press,
2002.

[9] T. Unemi, “Partial Breeding – a method of IEC for well-structured large
scale target domains,” in Proc. of the IEEE Conference on Systems, Man
and Cybernetics, TP1D4, Yasmine Hammamet, Tunisia, 2002.

[10] T. Unemi, “A Tool for Multi-part Music Composition by Simulated
Breeding,” in Proc. of the Eighth International Conference on Artificial
Life, Sydney, Australia, pp. 410–413, 2002.

[11] T. Takahashi, Y. Tsukahara, M. Nomura, and H. Matsuoka, “Pokemon
Seizures,” Neurological Journal of South East Asia, no. 4, pp. 1–11,
1999.

4009

